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RETHINKING 
ENERGY-
PERFORMANCE 
TRADE-OFF 
in Mobile Web Page 
Loading

lthough minimizing energy is 
necessary, it is essential to reduce 
energy without degrading user 
experience. An important 

reason is that slow loading time can have a 
big cost for businesses. For example, every 
100ms delay costs 1% of sales for Amazon 
[1] or 1-second delay in Bing search engine 
results in a 2.8% drop in revenue per user 
[2]. “As users migrate to mobile, page load 
time is perhaps the most important metric 
we have,” said Howard Mittman, VP and 
publisher of GQ magazine [3].

We seek to reduce the energy consump-
tion of web page loading on smartphones 
without compromising user experience1 [4]. 
In particular, we aim to not increase page 
load time. To achieve this goal, we study 
browser internals and system behaviors to 
understand how the energy is spent in load-
ing web pages, and to identify opportunities 
to improve the energy efficiency. The main 
architecture of Chrome web browser is  
illustrated in Figure 1.

Although many browser manufacturers 
have made an effort to improve energy 

efficiency for mobile devices [5], our 
findings indicate that the current 
mobile browsers are not yet fully energy 
optimized for web page loading. First, the 
web resource processing is aggressively 
conducted regardless of contents and 
network conditions at the risk of energy 
inefficiency. Second, the content painting 
rate is unnecessarily high, consuming 
a lot of energy without bringing user-
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1 Video demos and source code of this paper  
  are available at cps.kaist.ac.kr/eBrowser

Web browsers are one of the core applications on smartphones and other mobile devices, such as tablets. 
However, web browsing, particularly web page loading, is of high energy consumption as mobile browsers  
are largely optimized for performance and thus impose a significant burden on power-hungry mobile devices. 
With the advent of modern web capabilities, websites even become more complex and energy demanding.  
In the meantime, slow progress in battery technology constrains battery budget for mobile devices.  
As users are more aware of energy consumption of apps, it is desirable to improve the energy efficiency of  
web browsing, particularly web page loading. 

Excerpted from “Rethinking Energy-Performance Trade-Off in Mobile Web Page Loading,” from Proceedings of the 21st Annual  
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perceivable benefits. Finally, the power-
saving capability of modern CPUs with the 
emerging ARM big.LITTLE architecture 
[6] is underutilized. Fundamentally, the 
web page loading is overly optimized for 
performance but not for energy cost.

We argue that the energy-performance 
trade-off must be reconsidered for web 
page loading on mobile devices. Based 
on our findings, we formulate new design 
principles for energy-efficient web page 
loading. Based on these principles, we 
develop three new techniques, each one 
addressing one of the above energy-
inefficiency issues. First, we propose to 
use the network-aware resource processing 
(NRP) technique to effectively trade 
performance for energy reduction by 
adapting to changing network conditions. 
We use adaptive resource buffering 
to control the speed of web resource 
processing dynamically with regard to the 
speed of resource download, in order to 
become energy efficient without increasing 
page load time. Second, we propose the 
adaptive content painting (ACP) technique 
to avoid unnecessary content paints to 
reduce the energy overhead. We study 
the trade-offs between energy saving and 
the increase of page load time to ensure 
the user experience is not compromised. 

Finally, to better leverage the big.LITTLE 
architecture, we propose the application-
assisted scheduling (AAS) technique to 
leverage internal knowledge of the browser 
to make better scheduling decisions. 
Specifically, we employ adaptive thread 
scheduling based on Quality-of-Service 
(QoS) feedback in a way that the browser 
keeps threads running on little cores to save 
energy, as long as their QoS requirements 
are being satisfied.

Energy-efficient mobile web browsing 
has been explored through various 
approaches. Our work leverages browser 
internals (e.g., process/thread structure 
and resource fetching/processing pipelines) 
for energy-efficient browsing, while others 
focus on the characteristics of web pages 
(e.g., primitives [7], colors [8] and network 
accesses [9]). Thereby, we believe our work 
can be integrated with others to improve 
energy efficiency further.

ENERGY-EFFICIENT  
PAGE LOADING
Network-Aware Web Resource Processing: 
Although immediately processing data 
received from the server is natural and 
minimizes page load time, it is not energy 
efficient due to the accumulative overhead 
of the processing of small data chunks. 

Each time the read system call returns a 
data buffer, even if it is small, the Renderer 
process has to go through the whole web 
page rendering pipeline. In particular, for 
image data, many graphic activities are 
involved in the Compositor, Raster Worker 
and Async Transfer threads. As a result, the 
accumulated overheads are high and thus 
waste much energy, more than 10% of the 
total system energy cost [4].

The choice of how often to conduct web 
resource processing influences performance 
and energy efficiency. Frequent resource 
processing may come with energy 
inefficiency, since it can yield marginal 
progress while consuming a significant 
amount of energy. Therefore, we propose 
to design the web resource processing 
adaptive to the speed of downloading web 
resources, which we refer to as Network-
aware Resource Processing (NRP). A basic 
underlying principle is that the faster 
downloading, the larger batch size for better 
energy-efficiency should be. That is, we have 
a smaller batch size for slower downloading 
so as not to introduce excessive delays in 
web resource processing. We choose the 
network throughput (rate of receiving 
data) as an indirect but low-overhead 
indicator of the changes of the displayed 
content instead of doing accurate-yet-heavy 
analyses on user-perceived content changes 
on the screen for web resources received. 
Furthermore, to reduce the impact of NRP 
on page load time, we do not apply the 
buffering to critical resources that may delay 
the downloading of other resources.

Adaptive Content Painting: Content 
painting (i.e., web page rendering and 
screen updating) comes with a trade-off 
between the user experience and energy 
overheads. Although a high frame rate 
can provide very smooth user experience, 
it can incur a high overhead to GPU and 
CPU to render web pages and, when 
combined with high resolution, consume 
a lot of energy [10]. Content paints are not 
equal but may introduce different degrees 
of change on the screen. As the majority 
of content paints generate a zero or very 
small visible screen change, multiple 
content paints can be aggregated together 
to save energy without compromising user 
experience. For example, when Chrome 
loads the top 10 websites in the United 

FIGURE 1. Architecture of Chrome web browser
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States, we found that 56% of the paints do 
not generate any visible screen change, and 
62% of the paints generate a visible screen 
change of less than 5%.

Since the design of high-rate 
content painting is overly optimized for 
performance, not energy efficiency, we 
design the content painting to be adaptive 
to the visible changes on the screen, which 
we refer to as Adaptive Content Painting 
(ACP). We introduce a new parameter, 
called paint_rate, that limits the rate of 
content painting and dynamically adapts 
to the content changing speed so that we 
can aggregate content painting to save 
energy while preserving user experience. 
The paint_rate parameter increases when 
the content changes fast, and vice versa, 
within a predetermined range. Ideally, 
ACP technique should quantify the visual 
changes between painted frames to adapt 
with the degree of changes of content. 
However, doing so requires comparing 
consecutive frames pixel by pixel, which 
imposes heavy computation and thus a high 
energy cost. Therefore, we use a lightweight 
approach of linearly increasing and fast 
decreasing the paint_rate parameter, 
without any extra computation cost [4].

Application-Assisted Scheduling: 
Although big.LITTLE architecture is 
designed to save energy, we find that the 
energy-saving potential of big.LITTLE is 
not fully exploited in the case of Chrome. 
For example, as shown in Figure 2(a), 

when loading instagram.com, 89% of the 
total execution time is on the big cores. 
Specifically, we find that the little cores are 
underutilized. The reason of low little-core 
utilization is that the OS schedules threads 
based on a load-driven approach that 
favors performance over energy saving. On 
symmetric multi-core architectures, this 
approach is also energy efficient because if 
a thread can finish its task faster, the CPU 
can go to sleep sooner [11]. However, on 
heterogeneous multi-core architectures like 
big.LITTLE, finishing a thread sooner may 
not reduce the energy cost. As shown in 
Figure 2(b), a little core has a lower energy 
per instruction cost than a big core. Thus, a 
thread should run on a little core as long as 
it can tolerate the resulting delay.

To better utilize big.LITTLE architecture 
to save energy, we propose to leverage 
internal knowledge of browsers for energy-
efficient scheduling. We allow browsers 
to decide whether a thread should run on 
a big or little core. Browsers know much 
more information about their threads than 
the OS scheduler, e.g., what type of tasks 
the threads do, how important the threads 
are, how long finishing time a thread can 
tolerate, the semantics of the threads, and 
the relationship among them. Therefore, 
browsers may make better decisions on 
assigning threads to big or little cores. We 
design the AAS technique adaptive to QoS, 
as QoS is critical to user experience. The 
QoS is estimated by the frame rate of the 
browser. Thereby, the thread scheduling 

decisions are determined based on fine-
grained QoS instead of CPU load. We call 
this kind of technique Application-Assisted 
Scheduling (AAS).

IMPLEMENTATION
We have implemented the three techniques 
on Android by modifying Chromium (the 
open source project of Chrome browser) 
version 38, which was the latest stable 
version when we conducted the work of this 
paper. In total, we add about 1,200 lines of 
code into various modules of the browser 
as highlighted on Figure 1. No rooting or 
modification OS kernel and websites are 
needed.

EVALUATION
We present here the results for Samsung 
Galaxy S5 G900H model that uses Samsung 
Exynos 5422 SoC with 4 Cortex-A15 big 
cores and 4 Cortex-A7 little cores. The smart- 
phone runs Android 4.4.2 on Linux kernel 
3.10. We use a Monsoon power monitor to 
measure the total system energy consumption 
of the smartphones. We use the top 100 
websites in the United States according to 
Alexa in May 2014. A user study and results 
on other configurations with different metrics 
can be found in our paper [4].

Total energy saving: Figure 3(a) shows how 
much total energy saving can be achieved 
by all the three techniques together. The 
average total energy saving is 24.4%, 
ranging from 0.02% to 66.5%. 62 websites 

FIGURE 2. Energy efficiency and utilization on big.LITTLE architecture

(a) Execution time of threads in 
Chrome browser

(b) Energy consumption of cores on 
Samsung Galaxy 55 G900H
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have an energy saving of 15%-45%, and 
seven websites have an energy saving of 
more than 50%. These results demonstrate 
that our techniques are able to significantly 
reduce the energy cost of web page loading. 
The most energy reduced (66.5%) website 
is infusionsoft.com that has a heavy slide 
show of high resolution images with a 
fading transition effect. The least energy 
reduced websites are the ones with simple 
text content, such as usps.com. The most 
effective technique is AAS, reducing the 
average energy consumption by 19.5%.

Total page load time increase: Our 
techniques impose minimal extra page load 
time (PLT) as shown on Figure 3(b). The 
average PLT is even decreased by 0.38% 
(or decrease 29 ms in terms of the absolute 
PLT), ranging from -8.11% to 6.38%. This 
indicates that our techniques can reduce 
unnecessary workload, allowing web pages 
to load faster. In fact, 55 websites have 
a decreased PLT and 93 websites have 
PLT increases less than 3%. In terms of 
the absolute PLT, 94 websites have PLT 
increases less than 0.2 seconds.

CONCLUSION
This paper presented three effective 
techniques to optimize the energy 
consumption of web page loading on 
smartphones. Two of the techniques, 
network-aware resource processing and 
adaptive content painting, are designed 
to address energy-inefficiency issues of 
the current mobile web browsers in its 
content processing and graphic processing 
pipelines. The third one, application-

assisted scheduling, is designed to balance 
the trade-off between the energy saving 
and the QoS on big.LITTLE platforms. We 
have implemented the proposed techniques 
on Chromium and Firefox, and conducted 
comprehensive evaluations using real-world 
websites and latest-generation smartphones. 
Experimental results and user study show 
that the techniques are able to significantly 
reduce the energy cost of web page loading 
and introduce hardly perceivable page load 
time increase. n 
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