
39April 2016 | Volume 20, Issue 2 GetMobile

[HIGHLIGHTS]

RETHINKING
ENERGY-
PERFORMANCE
TRADE-OFF
in Mobile Web Page
Loading

lthough minimizing energy is
necessary, it is essential to reduce
energy without degrading user
experience. An important

reason is that slow loading time can have a
big cost for businesses. For example, every
100ms delay costs 1% of sales for Amazon
[1] or 1-second delay in Bing search engine
results in a 2.8% drop in revenue per user
[2]. “As users migrate to mobile, page load
time is perhaps the most important metric
we have,” said Howard Mittman, VP and
publisher of GQ magazine [3].

We seek to reduce the energy consump-
tion of web page loading on smartphones
without compromising user experience1 [4].
In particular, we aim to not increase page
load time. To achieve this goal, we study
browser internals and system behaviors to
understand how the energy is spent in load-
ing web pages, and to identify opportunities
to improve the energy efficiency. The main
architecture of Chrome web browser is
illustrated in Figure 1.

Although many browser manufacturers
have made an effort to improve energy

efficiency for mobile devices [5], our
findings indicate that the current
mobile browsers are not yet fully energy
optimized for web page loading. First, the
web resource processing is aggressively
conducted regardless of contents and
network conditions at the risk of energy
inefficiency. Second, the content painting
rate is unnecessarily high, consuming
a lot of energy without bringing user-

Duc Hoang Bui KAIST, Daejeon, South Korea Yunxin Liu Microsoft Research, Beijing, China
Hyosu Kim and Insik Shin KAIST, Daejeon, South Korea Feng Zhao Microsoft Research, Beijing, China

Editors: Robin Kravets and Nic Lane

1 Video demos and source code of this paper
 are available at cps.kaist.ac.kr/eBrowser

Web browsers are one of the core applications on smartphones and other mobile devices, such as tablets.
However, web browsing, particularly web page loading, is of high energy consumption as mobile browsers
are largely optimized for performance and thus impose a significant burden on power-hungry mobile devices.
With the advent of modern web capabilities, websites even become more complex and energy demanding.
In the meantime, slow progress in battery technology constrains battery budget for mobile devices.
As users are more aware of energy consumption of apps, it is desirable to improve the energy efficiency of
web browsing, particularly web page loading.

Excerpted from “Rethinking Energy-Performance Trade-Off in Mobile Web Page Loading,” from Proceedings of the 21st Annual
International Conference on Mobile Computing and Networking with permission. http://dl.acm.org/citation.cfm?id=2790103 © ACM 2015

Ph
ot

o,
 is

to
ck

ph
ot

o.
co

m

GetMobile April 2016 | Volume 20, Issue 240

[HIGHLIGHTS]

perceivable benefits. Finally, the power-
saving capability of modern CPUs with the
emerging ARM big.LITTLE architecture
[6] is underutilized. Fundamentally, the
web page loading is overly optimized for
performance but not for energy cost.

We argue that the energy-performance
trade-off must be reconsidered for web
page loading on mobile devices. Based
on our findings, we formulate new design
principles for energy-efficient web page
loading. Based on these principles, we
develop three new techniques, each one
addressing one of the above energy-
inefficiency issues. First, we propose to
use the network-aware resource processing
(NRP) technique to effectively trade
performance for energy reduction by
adapting to changing network conditions.
We use adaptive resource buffering
to control the speed of web resource
processing dynamically with regard to the
speed of resource download, in order to
become energy efficient without increasing
page load time. Second, we propose the
adaptive content painting (ACP) technique
to avoid unnecessary content paints to
reduce the energy overhead. We study
the trade-offs between energy saving and
the increase of page load time to ensure
the user experience is not compromised.

Finally, to better leverage the big.LITTLE
architecture, we propose the application-
assisted scheduling (AAS) technique to
leverage internal knowledge of the browser
to make better scheduling decisions.
Specifically, we employ adaptive thread
scheduling based on Quality-of-Service
(QoS) feedback in a way that the browser
keeps threads running on little cores to save
energy, as long as their QoS requirements
are being satisfied.

Energy-efficient mobile web browsing
has been explored through various
approaches. Our work leverages browser
internals (e.g., process/thread structure
and resource fetching/processing pipelines)
for energy-efficient browsing, while others
focus on the characteristics of web pages
(e.g., primitives [7], colors [8] and network
accesses [9]). Thereby, we believe our work
can be integrated with others to improve
energy efficiency further.

ENERGY-EFFICIENT
PAGE LOADING
Network-Aware Web Resource Processing:
Although immediately processing data
received from the server is natural and
minimizes page load time, it is not energy
efficient due to the accumulative overhead
of the processing of small data chunks.

Each time the read system call returns a
data buffer, even if it is small, the Renderer
process has to go through the whole web
page rendering pipeline. In particular, for
image data, many graphic activities are
involved in the Compositor, Raster Worker
and Async Transfer threads. As a result, the
accumulated overheads are high and thus
waste much energy, more than 10% of the
total system energy cost [4].

The choice of how often to conduct web
resource processing influences performance
and energy efficiency. Frequent resource
processing may come with energy
inefficiency, since it can yield marginal
progress while consuming a significant
amount of energy. Therefore, we propose
to design the web resource processing
adaptive to the speed of downloading web
resources, which we refer to as Network-
aware Resource Processing (NRP). A basic
underlying principle is that the faster
downloading, the larger batch size for better
energy-efficiency should be. That is, we have
a smaller batch size for slower downloading
so as not to introduce excessive delays in
web resource processing. We choose the
network throughput (rate of receiving
data) as an indirect but low-overhead
indicator of the changes of the displayed
content instead of doing accurate-yet-heavy
analyses on user-perceived content changes
on the screen for web resources received.
Furthermore, to reduce the impact of NRP
on page load time, we do not apply the
buffering to critical resources that may delay
the downloading of other resources.

Adaptive Content Painting: Content
painting (i.e., web page rendering and
screen updating) comes with a trade-off
between the user experience and energy
overheads. Although a high frame rate
can provide very smooth user experience,
it can incur a high overhead to GPU and
CPU to render web pages and, when
combined with high resolution, consume
a lot of energy [10]. Content paints are not
equal but may introduce different degrees
of change on the screen. As the majority
of content paints generate a zero or very
small visible screen change, multiple
content paints can be aggregated together
to save energy without compromising user
experience. For example, when Chrome
loads the top 10 websites in the United

FIGURE 1. Architecture of Chrome web browser

41April 2016 | Volume 20, Issue 2 GetMobile

[HIGHLIGHTS]

States, we found that 56% of the paints do
not generate any visible screen change, and
62% of the paints generate a visible screen
change of less than 5%.

Since the design of high-rate
content painting is overly optimized for
performance, not energy efficiency, we
design the content painting to be adaptive
to the visible changes on the screen, which
we refer to as Adaptive Content Painting
(ACP). We introduce a new parameter,
called paint_rate, that limits the rate of
content painting and dynamically adapts
to the content changing speed so that we
can aggregate content painting to save
energy while preserving user experience.
The paint_rate parameter increases when
the content changes fast, and vice versa,
within a predetermined range. Ideally,
ACP technique should quantify the visual
changes between painted frames to adapt
with the degree of changes of content.
However, doing so requires comparing
consecutive frames pixel by pixel, which
imposes heavy computation and thus a high
energy cost. Therefore, we use a lightweight
approach of linearly increasing and fast
decreasing the paint_rate parameter,
without any extra computation cost [4].

Application-Assisted Scheduling:
Although big.LITTLE architecture is
designed to save energy, we find that the
energy-saving potential of big.LITTLE is
not fully exploited in the case of Chrome.
For example, as shown in Figure 2(a),

when loading instagram.com, 89% of the
total execution time is on the big cores.
Specifically, we find that the little cores are
underutilized. The reason of low little-core
utilization is that the OS schedules threads
based on a load-driven approach that
favors performance over energy saving. On
symmetric multi-core architectures, this
approach is also energy efficient because if
a thread can finish its task faster, the CPU
can go to sleep sooner [11]. However, on
heterogeneous multi-core architectures like
big.LITTLE, finishing a thread sooner may
not reduce the energy cost. As shown in
Figure 2(b), a little core has a lower energy
per instruction cost than a big core. Thus, a
thread should run on a little core as long as
it can tolerate the resulting delay.

To better utilize big.LITTLE architecture
to save energy, we propose to leverage
internal knowledge of browsers for energy-
efficient scheduling. We allow browsers
to decide whether a thread should run on
a big or little core. Browsers know much
more information about their threads than
the OS scheduler, e.g., what type of tasks
the threads do, how important the threads
are, how long finishing time a thread can
tolerate, the semantics of the threads, and
the relationship among them. Therefore,
browsers may make better decisions on
assigning threads to big or little cores. We
design the AAS technique adaptive to QoS,
as QoS is critical to user experience. The
QoS is estimated by the frame rate of the
browser. Thereby, the thread scheduling

decisions are determined based on fine-
grained QoS instead of CPU load. We call
this kind of technique Application-Assisted
Scheduling (AAS).

IMPLEMENTATION
We have implemented the three techniques
on Android by modifying Chromium (the
open source project of Chrome browser)
version 38, which was the latest stable
version when we conducted the work of this
paper. In total, we add about 1,200 lines of
code into various modules of the browser
as highlighted on Figure 1. No rooting or
modification OS kernel and websites are
needed.

EVALUATION
We present here the results for Samsung
Galaxy S5 G900H model that uses Samsung
Exynos 5422 SoC with 4 Cortex-A15 big
cores and 4 Cortex-A7 little cores. The smart-
phone runs Android 4.4.2 on Linux kernel
3.10. We use a Monsoon power monitor to
measure the total system energy consumption
of the smartphones. We use the top 100
websites in the United States according to
Alexa in May 2014. A user study and results
on other configurations with different metrics
can be found in our paper [4].

Total energy saving: Figure 3(a) shows how
much total energy saving can be achieved
by all the three techniques together. The
average total energy saving is 24.4%,
ranging from 0.02% to 66.5%. 62 websites

FIGURE 2. Energy efficiency and utilization on big.LITTLE architecture

(a) Execution time of threads in
Chrome browser

(b) Energy consumption of cores on
Samsung Galaxy 55 G900H

GetMobile April 2016 | Volume 20, Issue 242

[HIGHLIGHTS]

have an energy saving of 15%-45%, and
seven websites have an energy saving of
more than 50%. These results demonstrate
that our techniques are able to significantly
reduce the energy cost of web page loading.
The most energy reduced (66.5%) website
is infusionsoft.com that has a heavy slide
show of high resolution images with a
fading transition effect. The least energy
reduced websites are the ones with simple
text content, such as usps.com. The most
effective technique is AAS, reducing the
average energy consumption by 19.5%.

Total page load time increase: Our
techniques impose minimal extra page load
time (PLT) as shown on Figure 3(b). The
average PLT is even decreased by 0.38%
(or decrease 29 ms in terms of the absolute
PLT), ranging from -8.11% to 6.38%. This
indicates that our techniques can reduce
unnecessary workload, allowing web pages
to load faster. In fact, 55 websites have
a decreased PLT and 93 websites have
PLT increases less than 3%. In terms of
the absolute PLT, 94 websites have PLT
increases less than 0.2 seconds.

CONCLUSION
This paper presented three effective
techniques to optimize the energy
consumption of web page loading on
smartphones. Two of the techniques,
network-aware resource processing and
adaptive content painting, are designed
to address energy-inefficiency issues of
the current mobile web browsers in its
content processing and graphic processing
pipelines. The third one, application-

assisted scheduling, is designed to balance
the trade-off between the energy saving
and the QoS on big.LITTLE platforms. We
have implemented the proposed techniques
on Chromium and Firefox, and conducted
comprehensive evaluations using real-world
websites and latest-generation smartphones.
Experimental results and user study show
that the techniques are able to significantly
reduce the energy cost of web page loading
and introduce hardly perceivable page load
time increase. n

Duc Hoang Bui is a PhD student in School of
Computing at KAIST, Korea, where he received
an M.S. in computer science. He was an intern
at Samsung Electronics and Microsoft Research
Asia. Now his research focuses on improving
the performance and energy efficiency of web
browsers on mobile systems.

Dr. Yunxin Liu is a lead researcher at System
Group, Microsoft Research Asia. He received
his Ph.D. degree in Computer Science from
Shanghai Jiao Tong University. His research
interests are mobile systems and networking,
focusing on power management, security and
privacy, and human sensing.

Hyosu Kim is a Ph.D. candidate in School of
Computing at KAIST, South Korea. He received
a B.S. degree from Sungkyunkwan University,
Korea, and a M.S. degree from KAIST, Korea in
2012. His research interests are in the areas of
mobile computing and sound engineering.

Insik Shin is an associate professor in the
School of Computing Science at KAIST.
He obtained a Ph.D. from University of
Pennsylvania. His research interests lie in
mobile computing, real-time embedded
systems, and cyber-physical systems. He
received Best Paper Awards from various
conferences, including RTSS and RTAS.

Dr. Feng Zhao is the chief technology officer
and vice-president for Advanced R&D and
Smart Home business at Haier. He received
his Ph.D. degree in Electrical Engineering
and Computer Science from MIT. He is an
IEEE fellow and his research has focused on
networked embedded systems.

REFERENCES
[1] G. Linden, “Make Data Useful,” 2006.
[2] E. Schurman and J. Brutlag, “The User and

Business Impact of Server Delays, Additional
Bytes, and HTTP Chunking in Web Search,”
in O'Reilly Velocity Web Performance and
Operations Conference, 2009.

[3] T. Everts, Time Is Money: The Business Value
of Web Performance, O'Reilly, 2016.

[4] D. H. Bui, Y. Liu, H. Kim, I. Shin and F. Zhao,
“Rethinking Energy-Performance Trade-Off in
Mobile Web Page Loading,” in ACM MobiCom,
2015.

[5] B. Heenan, “Building a more power efficient
browser,” Microsoft Edge Dev Blog, 2016.

[6] “big.LITTLE Technology,” ARM Ltd., 2016.
[Online]. Available: http://www.thinkbiglittle.
com/.

[7] N. Thiagarajan, G. Aggarwal and A. Nicoara,
“Who Killed My Battery: Analyzing Mobile
Browser Energy Consumption,” in WWW, 2012.

[8] M. Dong and L. Zhong, “Chameleon: A
Color-Adaptive Web Browser for Mobile OLED
Displays,” in ACM MobiSys, 2011.

[9] B. Zhao, W. Hu, Q. Zheng and G. Cao, “Energy-
Aware Web Browsing on Smartphones,” IEEE
Trans. on Parallel and Distributed Systems, 2015.

[10] K. W. Nixon, X. Chen, H. Zhou, Y. Liu and
C. Yiran, “Mobile GPU Power Consumption
Reduction via Dynamic Resolution and Frame
Rate Scaling,” in USENIX HotPower, 2014.

[11] A. Carroll and G. Heiser, “Mobile Multicores:
Use Them or Waste Them,” in USENIX
HotPower, 2013.

FIGURE 3. Total energy saving and PLT increase.

(a) (b)

Average energy savings (%) Average page load time increase (%)

