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ABSTRACT
While privacy laws and regulations require apps and services to

disclose the purposes of their data collection to the users (i.e., why
do they collect my data?), the data usage in an app’s actual behavior

does not always comply with the purposes stated in its privacy

policy. Automated techniques have been proposed to analyze apps’

privacy policies and their execution behavior, but they often over-

looked the purposes of the apps’ data collection, use and sharing.

To mitigate this oversight, we propose PurPliance, an automated

system that detects the inconsistencies between the data-usage pur-

poses stated in a natural language privacy policy and those of the

actual execution behavior of an Android app. PurPliance analyzes
the predicate-argument structure of policy sentences and classifies

the extracted purpose clauses into a taxonomy of data purposes.

Purposes of actual data usage are inferred from network data traffic.

We propose a formal model to represent and verify the data usage

purposes in the extracted privacy statements and data flows to

detect policy contradictions in a privacy policy and flow-to-policy
inconsistencies between network data flows and privacy statements.

Our evaluation results of end-to-end contradiction detection have

shown PurPliance to improve detection precision from 19% to 95%

and recall from 10% to 50% compared to a state-of-the-art method.

Our analysis of 23.1k Android apps has also shown PurPliance
to detect contradictions in 18.14% of privacy policies and flow-to-

policy inconsistencies in 69.66% of apps, indicating the prevalence

of inconsistencies of data practices in mobile apps.
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1 INTRODUCTION
The Federal Trade Commission (FTC) has relied on privacy policies

written in natural language as a primary means to check and inform

users how and why apps collect, use and share user data [16]. Since

purposes of data collection and use/sharing are key factors for

users to decide whether to disclose their personal information or

not [42], it is important for apps to make the users aware of, and

consent to them. For example, users would more likely to agree to

provide their location for receiving an app’s services rather than

for advertising purposes. Moreover, while the purposes of data

collection, use and/or sharing are specified in the apps’ privacy

policies, the apps’ actual execution behavior may deviate from their

specifications in the policies.

Despite its importance, little has been done on checking the

consistency between the purposes stated in the privacy policies and

the actual execution behavior of apps. Prior studies [8, 7, 65, 70,

72, 75] overlooked the purposes and entities whose purposes were
served. Furthermore, the assumption that data sent to an entity is

always used for any of the receiver’s purposes may not hold when

the external service processes the data for the app’s purposes. For

example, the data sent to an analytic service should be used for

the app to analyze its usage trend, not for the analytic service’s

purposes such as delivering personalized advertisements.

A key question is then: Can we automatically check whether the
purposes of actual data usage comply with those stated in privacy
policies or not? The first challenge in answering this question is

to achieve a clear interpretation of the privacy policy and detect

contradictory privacy statements which, if exist, will make the dis-

closure of data flows ambiguous. The second challenge is to extract

the purposes of the actual data flows from the app behavior and

compare them with (potentially contradictory) privacy statements.

Analyzing fine-grained purposes of data usage yields a funda-

mentally different and more complete interpretation of privacy

policies than purpose-agnostic approaches, such as PolicyLint [7]

and PoliCheck [8]. Let us consider the following policy statement

from a popular app on Play Store with more than 1M installations.

Example 1: "We do not share personal information with third parties
for their own direct marketing purposes."

PurPliance interprets this example as third parties may collect

personal data but do not use it to deliver their own advertising,

which is part of marketing purposes. Therefore, PurPliance flags a
contradictory data-usage purpose in another statement stating that

the app "may share your personal data with third-party advertising

partners to serve personalized, relevant ads." Purpose-agnostic ap-

proaches [8, 7] narrowly interpret Example 1 as the app would not

share any personal data. Such approaches do not accurately detect
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the contradiction of the advertising usage purpose and generate

lots of false positives because the example would then contradict

any other statements about sharing of the user’s personal data.

We present PurPliance, an end-to-end fully automated system

that detects contradictory privacy statements and inconsistent app

behaviors. In the system workflow (depicted in Fig. 1), contradic-

tion/inconsistency analysis (right half) is fully automated while

ontology extraction (left half) is manual and performed only once.

Inspired by the soundness (i.e., no-false-positive) in software testing

with dynamic analysis [30, 31, 66], PurPliance is designed to maxi-

mize the precision of detection (i.e., a reported inconsistency should

always be true positive), as opposed to maximizing the recall rate.

PurPliance addresses the following three technical challenges.

TC1 (Purpose clause extraction): Purpose clauses are written in

lengthy and complex phrases, and hence it is difficult to determine

their start and end in a sentence. PurPliance leverages neural

Semantic Role Labeling (SRL) models [35, 62] that are capable of an-

alyzing many more grammatical variations than prior work [7], to

extract privacy statement parameters from the semantic arguments

of data-practice predicates. Finally, PurPliance extracts uncom-

pounded purposes from complex purpose clauses by analyzing

their semantic/syntactic structures and decomposing the clauses

into simpler predicate-object pairs and noun phrases. We orga-

nize the common purpose clauses extracted from a large collection

of privacy policies into a hierarchical taxonomy that defines the

relationships among different usage purposes.

TC2 (Data flow extraction): Extracting the purpose of data

flows to/from each app is very challenging because the flows take

place at a low data level and lack high-level semantics. PurPliance
leverages recently-developed datasets and dynamic analysis tech-

niques [33] to infer the purposes and the purpose-served entities of

network data traffic from the transferred data and its context. The

low-level purposes of data traffic are then mapped to higher-level

data-usage purposes in our taxonomy of data purposes.

TC3 (Automated consistency analysis): Automatic detection

of contradictory privacy policy statements and inconsistent net-

work data flows requires automated reasoning of these concepts.

We introduce the notion of data-usage purpose which comprises a

purpose-served entity and a usage purpose, and is separated from

data collection and sharing. We formalize privacy statements and

data flows, and formulate a consistency model to analyze and detect

policy contradictions and flow-to-policy inconsistencies.

The evaluation of our end-to-end contradiction detection demon-

strates that PurPliance is able to detect contradictory sentence

pairs in privacy policies with significantly higher precision and re-

call than PolicyLint [7], a state-of-the-art policy analysis technique.

An in-depth analysis shows two main sources of these improve-

ments: 1) semantic-argument analysis improves the extraction of

privacy statement tuples and 2) data-usage purpose analysis en-

hances the expressiveness of the privacy statement tuples to reflect

the policy sentences’ semantics more accurately. This paper makes

the following main contributions:

• Automatic extraction and classification of data usage purposes
in privacy policies. We developed automatic extraction of pur-

pose clauses based on semantic arguments of the data practice

predicates (Sections 3.1). We introduced predicate-object pairs to

extract simple purposes from a complex clause (Section 3.2). We

studied data usage purposes in a large privacy policy corpus to

construct a purpose taxonomy and develop automatic classifiers.

To the best of our knowledge, this is the first large-scale study

and classification of data usage purposes in privacy policies.

• Formalization and automatic extraction of privacy statements and
data flows with support for data-usage purposes. We developed

NLP-based automatic methods to extract privacy statements

with data-usage purposes from policy sentences (Section 4). We

adapted existingmethods to extract data flowswith data purposes

from network data traffic (Section 5).

• A formal consistency model with support for data-usage purposes.
We propose a formal model to detect contradictions in privacy

policies and flow-policy inconsistencies between privacy policies

and mobile apps’ data collection (Section 6).

• An end-to-end system (called PurPliance, open sourced at [18])

that detects inconsistencies between the privacy policy and actual

data collection of an app. A corpus of 108 privacy policies (publicly
available at [18]), containing 5.9k sentences and 189 contradic-

tory sentence pairs, was constructed to evaluate the end-to-end

contradiction detection. The results show that PurPliance im-

proves the precision from 19% to 95% and the recall from 10%

to 50% compared to PolicyLint. An in-depth analysis shows that

PurPliance extracts 88% more privacy statements in 45% more

sentences with 9% higher precision than PolicyLint.

• A large-scale study of policy contradictions and flow–policy incon-
sistencies in 23.1k Android apps (Section 8). PurPliance found

29,521 potential contradictions in 18.14% of the policies and 95,083

inconsistencies in 69.66% of the apps, indicating the prevalence

of inconsistencies of data-usage purposes in mobile apps.

2 RELATEDWORK
Purpose Analysis in App Behavior. There has been a rich body

of work to extract semantics of app behavior to identify potential

leakage of sensitive information. Whyper [53], AutoCog [56] and

CHABADA [23] analyze and assess the risks of an app’s behavior

(e.g., permission and API usage) in comparison with the app’s de-

scription. FlowCog [52] extracts semantics of data flows from an

app’s GUI to analyze information leaks. NoMoATS [63] inspects the

URL and HTTP headers to detect mobile network requests engaged

in advertising and tracking. MobiPurpose [33] extracts and infers

personal data types and purposes of their data collection from net-

work traffic of Android apps, but it does not check whether the

data-collection purposes are legitimate or not.

Privacy Policy Analysis. NLP and ML have been widely used for

analyzing natural-language privacy policies. Privee [74] and Poli-

sis [27] analyze privacy policies at the document- and paragraph-

level to answer users’ questions. However, both are limited by their

coarse-grained analyses while our sentence- and phrase-level analy-

ses provide more detailed and comprehensive results. PolicyLint [7]

uses dependency parsing to extract privacy statements from policy

documents but does not analyze purposes of data collection.

Bhatia et al. [11] extract common patterns of purposive state-

ments from privacy policies and use semantic frames to analyze

the incompleteness of privacy goals, which include the purposes of

data practices [12]. Shvartzshnaider et al. [64] analyze information



Figure 1: PurPliance system workflow. Dashed boxes indicate the system inputs.

Data Practice Verbs

Sharing disclose, distribute, exchange, give, lease, provide,

rent, release, report, sell, send, share, trade, transfer,

transmit

Collection collect, gather, obtain, receive, record, store, solicit

Use access, analyze, check, combine, connect, keep, know,

process, save, use, utilize

Table 1: List of the SCoU verbs used by PurPliance.

flows in a limited set of privacy policies following the contextual

integrity framework [48]. However, these semi-automated methods

require the laborious manual efforts of experts or crowd workers.

Behavior-Policy Compliance Analysis of Mobile Apps. Analysis of
the (in)consistencies between the actual behavior of mobile apps

and their privacy policies has gained considerable interest in recent

years. Prior work tracks the collection of users’ personal data auto-

matically via Android API calls [65, 73, 75], or via user inputs on app

GUI [70]. PoliCheck [8] built upon PolicyLint [7] and the AppCen-

sus dataset [9] improves the accuracy of detecting non-compliances

in an app’s data flows by taking into account the recipients of the

personal data. However, PoliCheck does not consider the business

purposes of the data flows. Several researchers focus on narrow app

categories, such as paid apps [25] or apps targeting family users and

children [50, 59, 60]. They are limited to specialized app categories

while PurPliance is general and applicable to any type of apps.

Taxonomy of Privacy Purposes. OPP-115 dataset [71] includes 11
classes of data collection and sharing purposes that were manually

created in a top-down fashion by law experts. In contrast, we created

a hierarchical taxonomy of data-usage purposes by using neural text

clustering with contextualized word embeddings to group similar

purpose clauses in a large policy corpus. Despite a rich body of

work on text clustering [3, 44], we are not aware of any other work

that applies text clustering to the analysis of purposes in privacy

policies.

3 EXTRACTION OF DATA USAGE PURPOSES
3.1 Extraction of Data Usage Purpose Clauses
3.1.1 Extraction of Data Practice Predicates and Semantic Argu-
ments. PurPliance extracts the purposes of privacy practices by

analyzing patterns of semantic arguments, syntactic structures (i.e.,

parts of speech and dependency trees) and a lexicon of data prac-

tices. It first finds data practice predicates (i.e., verbs) that express

the action of a privacy practice event such as "collect" and "share".

PurPliance iterates through the tokens of the sentence and ex-

tracts those words whose part-of-speech tags are a verb and whose

lemmas are in a manually curated list of Sharing-Collection-or-Use

(SCoU) verbs as given in Table 1.

We empirically identified common verbs in randomly selected

privacy sentences to extend the SoC verbs in PolicyLint [7]. While

PolicyLint only distinguishes between collection and sharing of

data, we separate some use verbs. Although the use actions do not

explicitly construct personal data flows, they still provide valuable

information about data processing purposes. We added a verb to the

SCoU list by surveying its usage in randomly selected sentences in

our privacy policy corpus. Because every verb has multiple mean-

ings, some of which are unrelated to data collection/sharing/use,

there is a trade-off: naively adding verbs increases recall but reduces

precision. Therefore, we select verbs that are frequently used to

express data practices (i.e., in over 80% of 100 random sentences).

Given a data practice predicate, PurPliance analyzes its seman-

tic arguments which are phrases that fill the meaning slots of the

predicate and define its details. They answer questions such as

"who?", "did what?", "to whom?", and "for which purpose?" of an

event expressed by the predicate [35, 39]. Because arguments of the

same event are consistent across varying syntactic forms, parame-

ters of privacy statements (such as the receiver and data object) can

be extracted accurately even though the same data practice event is

expressed in multiple ways with varying grammars. An example of

semantic arguments in varying expressions is given in Appendix A.

PurPliance uses Semantic Role Labeling (SRL), also called shal-
low semantic parsing, to recover the latent predicate-argument struc-

tures of sentences. SRL models are trained on corpora called propo-
sition banks (PropBank) which contain labels of the semantic roles

of sentences. In the corpora, such as OntoNotes 5.0 [57], a specific

set of roles is specified for different senses of each verb. Some roles

are numbered rather than named to make them more general (e.g.,

Arg1 for object arguments) while many un-numbered modifier ar-

guments represent the modification or adjunct meanings [14]. The

definition of a role may vary with a verb’s senses. For example,

while Arg2 typically denotes the instrument of a predicate, Arg2 of
certain data usage verbs like use and store indicates their purposes.

3.1.2 Extraction of Purpose Clauses. We identified semantic argu-

ments that represent purposes based on their specifications in the

CoNLL2012 corpus’ verb sense frames [57]. The common arguments

for purposes are Argm-Prp and Argm-Pnc, i.e., argument modifier

purpose and purpose-not-cause, respectively. Table 2 presents some



Data Action Sender Receiver Data Purpose Example

Sharing Arg0 Arg2

Arg1

Argm-Prp

or

Argm-Pnc

[We]Arg0 do not [share]V [your data]Arg1 [with third parties]Arg2 [for their purposes]Argm-Pnc.

Collection Arg2 Arg0 [We]Arg0 [collect]V [passwords]Arg1 [for authentication]Argm-Prp.

Use N/A Arg0 [We]Arg0 may [process]V [your contact information]Arg1 [to send you promotions]Argm-Prp.

Table 2: Mapping from semantic roles to privacy statement parameters. V denotes a predicate (i.e., verb).

examples. Besides the common purpose arguments, PurPliance an-
alyzes additional arguments for certain predicates to identify their

purposes, such as Arg2 of use and save. The list of these predicate-
specific purpose arguments is shown in Table 12 (Appendix A).

A verb may have multiple meanings, such as "save" which means

either to savemoney or to collect (accrue) things. The lattermeaning

is more relevant in our context of data collection. We verified that

arguments of different senses of the data practice verbs have the

same meaning for the purpose of our privacy statement extraction,

and hence we do not disambiguate the verb senses in this analysis.

We consider three forms of purpose clauses that either (1) start

with "to" followed by a base-form verb, (2) start with "in order to"

followed by a base-form verb, or (3) start with "for" followed by a

gerund (a noun derived from a verb ending with -ing) or a noun. The
first two forms are the standard identification of purpose clauses in

English [34, 37, 46]. The third form is common in privacy policies,

such as in "for providing services" or "for the purposes of ..."

3.2 Classification of Policy Purposes
3.2.1 Uncompounded Purpose Extraction. Since multiple simple

purposes are commonly combined into complex purpose clauses,

PurPliance decomposes them into simple single-purpose parts,

called uncompounded purposes, similar to contextual sentence de-

composition [10, 19] used to improve information extraction. There-

fore, each complex purpose clause is simplified into a set of uncom-

pounded purposes, each of which is represented by a predicate-

object (PO) pair. A PO pair (p,o) consists of a predicate (verb) 𝑝

that acts on an object 𝑜 . For example, "to provide and improve our

services" is decomposed into (provide, our services) and (improve,
our services). Similarly, each noun phrase np can be converted to

a PO pair with an empty predicate (‘’, np). For example, "for fraud

prevention and service maintenance" produces "fraud prevention"

and "service maintenance". Table 13 shows some PO-pair examples.

Each PO pair is extracted by first identifying the predicates

and then their objects as its arguments. To extract a predicate,

PurPliance finds words with a verb part of speech, excluding sub-

sumptive relation verbs (e.g., including and following). Predicates
also include past participles used as adjectives, such as "person-
alized content." The objects are then the noun phrases in each

identified predicate’s arguments. Similarly, PurPliance creates PO

pairs whose predicates are empty and objects are the longest non-

overlapping noun phrases extracted from the purpose clause by

using a noun phrase extraction technique [26].

3.2.2 Purpose Taxonomy. We extracted uncompounded purpose

clauses from a large collection of privacy policies and categorized

them into semantically-similar groups to create a taxonomy of

purposes. This process of creating a purpose taxonomy is different

from data-object and entity ontologies [7] because privacy policies

do not have subsumption expressions for purposes as commonly

used for data types and entities, e.g., "personal information includes
email address and name". First, from the privacy policy corpus,

purpose clauses were extracted as described in Section 4. Purpose

phrases with invalid prefixes (not beginning with "to", "for" or "in

order to" + V) or empty PO pairs were filtered out. Uncompounded

phrases were then created by concatenating the predicate and the

object of each PO pair of the extracted purpose clauses. Finally,

uncompounded purpose clauses with the number of occurrences

greater than a threshold 𝜏 were selected to construct a taxonomy.

The uncompounded purpose clauses are grouped into seman-

tically similar groups by using text clustering [44]. Each clause

was converted into real-value vectors using roberta-large-nli-stsb-
mean-tokens, a BERT-based sentence embedding model trained on

semantic textual similarity datasets [58]. The vectors were grouped

into 𝛾 clusters by K-means clustering [61]. The number of em-

bedding groups was chosen heuristically by visualization using

t-SNE [43] and by balancing the trade-off between granularity and

complexity of the taxonomy.

We chose to use a small number of high-level groups to keep

the taxonomy simple while still achieving the goal of detecting

contradictions and inconsistencies. From 17k privacy policies, 392k

uncompounded purpose clauses were extracted. 6,068 unique un-

compounded purpose clauses were then selected using frequency

threshold 𝜏 = 5. This threshold was empirically chosen to remove

noisy rare purpose clauses while shortening the t-SNE visualization

time so that we can iteratively develop purpose-clusters without

losing common purpose clauses. We conducted an iterative process

of adjusting the number of classes and categorizing PO pairs to the

selected classes until only a small number of PO pairs do not fit the

taxonomy. 𝛾 = 16 was chosen for 15 clusters with a concrete pur-

pose and 1 cluster withOther purpose. Provide ad and Personalize ad
are separated for fine-grained classification. Providing ad indicates

to only deliver, show, or provide advertising while personalizing

ad indicates to customize, personalize, or tailor advertising. Since

the purposes in the Other class are unrecognized purpose clauses,

they do not have relationships (e.g., subsumption) with each other

and are thus excluded from the consistency analysis.

Based on the economic activities of businesses [38], the 𝛾 low-

level classes were further grouped into high-level categories: Pro-

duction, Marketing, Legality, and Other categories. In the taxonomy,

a low-level purpose is an instance of (i.e., has a subsumptive rela-

tionship with) the corresponding high-level purpose. For example,

Provide ad is a Marketing purpose. In addition, we consider Person-
alize ad to be subsumed under Provide ad and Personalize service. If
a service personalizes ads, then it provides ads, but not vice versa,

because an ad can still be displayed without being personalized to

the user’s interest. The taxonomy is listed in Table 3’s left half.

3.2.3 Data-Usage Purpose Classifier. PurPliance classifies pur-

pose clauses by matching patterns of 𝑛-grams (e.g., words and



High-level Low-level Predicate Patterns Object Patterns

Production

Provide service provide, deliver

service, app, product

Improve service improve

Personalize service

personalize,

customize

base location service

Develop service track, detect issue, bug

Manage service administer, manage service, app, product

Manage accounts create, manage account

Process payments process, complete payment, transaction

Security

detect, investigate,

breach, fraud

prevent

authenticate, verify user, identity

Marketing

Customer commun-

ication

notify user

send update

resolve inquiry

Marketing analyt-

ics

analyze usage, trend

Promotion send promotion, reward

Provide ad provide, deliver advertising,

Personalize ad personalize, target advertisement

General marketing marketing

Legality General legality

enforce term, right

comply law

Other Other purposes

Table 3: Left half: high- and low-level purposes in the data
usage purpose taxonomy; Right half: examples of patterns
of the predicates and objects in purpose clauses.

bigrams) on lemmas of predicates and objects in the PO pairs of

purpose clauses. We observe patterns that do not depend on the

statement context, so matching such 𝑛-gram context-insensitive

patterns provides precise classification. Moreover, PurPliancemay

classify one clause into multiple categories. For example, "provide

personalized services" would be classified into Provide service and
Personalize service.

To develop patterns and evaluate classification performance,

we first extracted purpose clauses from all privacy policies and

randomly divide them into training and test sets. 198,339 purpose

clauses were extracted from our privacy policy corpus of 16.8k

unique privacy policies. The training and test sets have 158,671

(80%) and 39,668 (20%) purpose clauses, respectively.

Patterns were developed on the training set which is disjoint

from the test set. We randomly selected 1000 sentences in the train-

ing set and classified them until reaching a desirable coverage. The

patterns covered 46% of the training set and 44% of the test set. The

right half of Table 3 lists some example patterns on PO pairs.

To evaluate the classifier’s precision, we randomly selected pur-

pose clauses from the test set and classified them until each purpose

class in the taxonomy contains at least 30 samples. The extracted

purposes were then independently verified with the purpose taxon-

omy (Table 3) by two co-authors. Their disagreements were resolved

via follow-up discussions. Of 510 randomly-selected samples in the

test set, PurPliance achieved 97.8% precision on average. This

high precision of the classifiers is due partly to the use of strict

rule-based matching. The precision score of each purpose class is

shown in Table 14 (Appendix C).

4 PRIVACY STATEMENT EXTRACTION
4.1 Definition of Privacy Statement
Each sentence in a privacy policy is formalized as a privacy state-

ment which has two components: Data Collection which is the

transfer of data to a receiver and Data Usage which represents the

usage of the data and its purpose.

Definition 4.1 (Privacy Statement). A privacy statement is a pair
(𝑑𝑐, 𝑑𝑢) where𝑑𝑐 (𝑑𝑢) represents data collection (usage). 𝑑𝑐 = (𝑟, 𝑐, 𝑑)
denotes whether or not a receiver 𝑟 collects (𝑐 ∈ {collect, not_collect})
a data object 𝑑 . 𝑑𝑢 = (𝑑, 𝑘, 𝑝) represents whether or not data 𝑑 is used
for (𝑘 ∈ {for, not_for}) an entity-sensitive data usage purpose 𝑝 .

The data usage can be a special 𝑁𝑜𝑛𝑒 value when the statement

does not specify any purpose for the data collection or PurPliance
cannot extract the purpose from a sentence. While a privacy state-

ment can be represented as a flat 5-tuple (𝑟, 𝑐, 𝑑, 𝑘, 𝑝), we explicitly
separate data collection 𝑑𝑐 from data usage 𝑑𝑢 to distinguish the

source of a contradiction which is either 𝑑𝑐 or 𝑑𝑢. Furthermore,

our contradiction analysis can use hierarchical checking that has

a smaller number of rules than that for the high-dimensional flat

representation. Moreover, the 5-tuple representation also suffers

from a large number of relationships between two tuples which

increase exponentially with the number of tuple dimensions. Sepa-

rating the data usage from data collection creates a constraint that

if 𝑐 = not_collect, then 𝑑𝑢 should be 𝑁𝑜𝑛𝑒 because the data object

𝑑 cannot be used without collecting it first.

Entity-Sensitive Data Usage Purposes. We define entity-sensitive

data usage purposes as follows to capture themeaning of statements

that mention whether the data is used for the purposes of the app

itself or a third party. For example, "for third parties’ ownmarketing

purposes" is represented as a pair (third party, marketing).

Definition 4.2 (Entity-Sensitive Data Usage Purpose). An entity-
sensitive purpose of data usage is a pair (𝑒, 𝑞), where 𝑒 is the entity
whose purpose is served, called purpose-served entity, and 𝑞 is a data
usage purpose.

As an example, "third parties do not collect device identifiers

for their advertising purposes" will be translated into a statement

(dc=(third party, collect, device ID), du=(device ID, not_for, (third party,
advertising)). We assume third parties still collect device IDs but the

data is not used for third parties’ advertising purposes. Because of

"their" word, we also assume the data serves third parties’ purposes.

Compared to PolicyLint, PurPliance adds a new data usage

representation du, uses a representation of data usage purpose and

has a more complete interpretation of privacy sentences. While

the dc component contains the same parameters as in PolicyLint,

PurPliance uses a different interpretation of data collection in

privacy policy sentences. Given the above sentence, PolicyLint

creates (third party, not_collect, device ID) but it implies absolutely

no collection of device IDs and would flag any other statements

about the collection of a related data type.

4.2 Extraction of Statement Parameters
PurPliance extracts phrases that correspond to the parameters

of privacy statements from a sentence in 3 steps: (1) identify data

practice predicates (verbs), (2) extract the semantic arguments of

each predicate and (3) map these arguments to the parameters.

Receiver Extraction. The receiver and sender of a data practice

are determined by eitherArg0 orArg2, depending on the action type
(i.e., collection, use, or sharing). Since Arg0 and Arg2 are typically



Rule Extracted span* Created privacy statements

𝑇1 (r, not_collect, d, None) ((r, not_collect, d), None)
𝑇2 (r, not_collect, d, p) ((r, collect, d), (d, not_for, p))

𝑇3 (s, share, r, d, None) ((s, collect, d), None) and
((r, collect, d), None)

𝑇4 (s, not_share, r, d, None) ((s, collect, d), None) and
((r, not_collect, d), None)

𝑇5 (s, share, r, d, p) ((s, collect, d), None) and
((r, collect, d), (d, for, p))

𝑇6 (s, not_share, r, d, p) ((s, collect, d), None) and
((r, collect, d), (d, not_for, p))

Table 4: Privacy statements created from extracted text
spans. * text span = (sender, action, receiver, data, purpose).

the actor and the beneficiary of an action, if the action is collec-

tion, Arg0 is the receiver and Arg2 is the sender of the data object.
Similarly, these roles are swapped if the action is sharing. In the

case of data-using actions, there is no sender and Arg0 represents
the entity that uses the data. The mapping from the arguments to

the sender/receiver is shown in Table 2. The first or third party

can also be mentioned implicitly in a sentence depending on the

type of the data practice. For example, in "we will not share your

sensitive data," the missing receiver is inferred as an implicit third
party since the type of data action is sharing. When a verb is a

clausal complement (i.e., its dependency is xcomp) and the receiver

is an object pronoun, it would be converted to a subject pronoun.

For example, in "you authorize us to collect your personal data to

provide the services," Arg0 of collect is us which is then converted

to we.

Conversion from Extracted Spans to Privacy Statements. Privacy
statements are generated from extracted spans by using transfor-

mation rules as listed in Table 4. Rules𝑇1 and𝑇2 convert spans with

a collection verb while rules 𝑇3–𝑇6 convert spans with a sharing

verb. A rationale behind rules 𝑇3–𝑇6 is that the data collection and

sharing are observed only at the client side (i.e., the app), and hence

the data collection or sharing on the server side is unknown. In

particular, rule 𝑇3 assumes the sender may have the data before

sharing it. Similarly, rule 𝑇4 means while the sender does not share

data, it may still collect the data. Rules 𝑇5 and 𝑇6 mean the receiver

may still collect data, but the data should not be used for the pur-

pose 𝑝 . For example, given "we do not provide your personal data

to third parties for their own marketing purposes," we interpret this

statement as personal data can be transferred to third-party service

providers, but does not serve the third parties’ purposes.

Action Sentiment Extraction. The sentiment of a data practice can

be either positive or negated and indicates whether the data action

is performed or not, respectively. The sentiment is determined by

checking the presence of the negation argument Argm-Neg. If the
predicate has no Argm-Neg, PurPliance analyzes its dependency
tree to determine its negation using the method in PolicyLint [7].

For example, in "we never sell your data," sell has a negated sen-

timent because it has a negation argument never. However, the

negation of use-verbs does not generate not_collect because "app
does not use data A" does not mean the app does not collect data A.

Data Object Extraction. PurPliance extracts the text spans of the
objects of the privacy practice actions using SRL and extracts data

object noun phrases using named entity recognition (NER) [35].

First, argument Arg1 is mapped to the Data component since it

is the object of a verb across data practice action types. Second,

the verb argument is then further refined by using NER which is a

common technique used to extract data objects [7]. For example,

given "we may use your name and street address for delivery", NER

extracts "your name" and "street address" from the corresponding

argument identified by SRL.

Purpose-Served Entity Extraction. Although it is more accurate to

determine the purpose-served entities by performing co-reference

resolution [35], PurPliance uses keyword matching to extract

purpose-served entities. PurPliance leverages an observation that

"their" commonly means third parties because data-practice state-

ments in privacy policies are frequently between first-party/users

and third parties, such as in the sentence "third parties may not use

personal data for their own marketing purposes." Similarly, "our" in

purpose clauses commonly refers to first parties. If no such entities

were found, the purposed-served entity is set to "any party".

Purpose analysis allows more accurate interpretations of certain

sharing statements. In particular, when user data is used for "mone-

tary" or "profitable" purposes or when the data practice is to "lease",

"rent", "sell" and "trade" the user’s data, we interpret that the data

is shared for a third party’s purposes. To reduce false positives, we

only include the Marketing – Provide ad purpose which is the most

common. When an advertiser collects a data object for advertising

purposes, the purpose-served entity is also set to the advertiser.

Exception Clauses. Given a sentence that includes an exception

clause which does not contain data objects or entities, if the privacy

statement extracted from the sentence has a negated sentiment,

PurPliance changes the sentiment of the privacy statement to be

positive. For example, "we do not share your personal data with

third parties for their marketing purposes without your consent"

produces text spans (we, share, third party, your personal data, (their,
marketing)). This exception clause handling is similar to PolicyLint.

PurPliance generates additional privacy statements in certain

cases when a sentence contains exceptions about purposes. If the

sentence is negated and contains "other than [purpose clause],"

the data will not be used for other high-level purposes. Excluding

other high-level purposes which are semantically non-overlapping

produces fewer false positives than excluding other low-level pur-

poses.

Similarly, PurPliance creates opposite-sentiment privacy state-

ments for other purposes if the sentence contains "for [purpose

clause] only," or "only for [purpose clause]." PurPliance also ex-

cludes the data usage for the purposes of third parties given purpose-

restrictive phrases such as "only for internal purposes." Although

many third parties’ purposes can be considered to be outside of

"internal purposes", we exclude only Marketing – Provide ad, which
is the most common, to reduce false positives.



5 DATA FLOW EXTRACTION
5.1 Data Purpose Analysis
PurPliance re-implements MobiPurpose approaches [33] to infer

the data types and usage purposes frommobile apps’ network traffic

(Sections 5.3 and 5.4). The data types and purposes of app–server

communication are inferred from the content of the data sent to the

server, the destination and the app description. While the semantics

of data is vague, resource names (e.g., variables or server names) are

assumed to clearly reflect their intentions [33, 63] as it is necessary

for effective software engineering [47] and especially important for

server names shared by multiple parties. The rationale of feature

selection and system design is discussed at length in [33].

Since only the dataset of MobiPurpose [33] is available, we re-

produce its inference and adapt the labels to the purposes in our

purpose taxonomy. We assume the human annotators of MobiPur-

pose dataset correctly labeled the purposes of data, so the high

agreement of ML with human annotators means that ML predicts

the purposes of data with a high probability.

5.2 Data Flow Definition and Extraction
Definition 5.1 (Data Flow). A data flow is a 3-tuple (𝑟, 𝑑, 𝑝) where a
recipient 𝑟 collects a data object𝑑 for an entity-sensitive purpose 𝑝 and
𝑝 = (𝑒, 𝑞) where 𝑒 is the purpose-served entity and 𝑞 is a data-usage
purpose.

App requests are commonly structured in key–value pairs [67],

so each structured data sent to the server is decomposed into mul-

tiple key–value pairs {𝑘𝑣𝑙 }. Therefore, each request or response

between app 𝑎𝑝𝑝𝑖 and end-point 𝑢𝑟𝑙 𝑗 corresponds to a set of low-

level flows 𝐹 = {𝑓𝑘 |𝑓𝑘 = (𝑎𝑝𝑝𝑖 , 𝑢𝑟𝑙 𝑗 , 𝑘𝑣𝑙 )}. The data type𝑑 , purpose-
served entity 𝑒 and usage purpose 𝑞 are then inferred from 𝐹 .

PurPliance distinguishes first and third parties to determine

the purpose-served entity 𝑒 by analyzing the receiver 𝑟 and the

inferred data-usage purposes 𝑞. For example, an app’s "supporting"

services like content delivery networks (CDNs) use data for the

app’s first-party purposes rather than for another party’s. While

there are many combinations of 𝑟 (e.g., First-party or Third-party)
and 𝑞 (one of 5 purposes, Table 6), to avoid false positives, we con-

servatively set 𝑒=Advertiser only when 𝑟=Advertiser and 𝑞=Provide
ad or Personalize ad (i.e., an advertiser uses collected data for its

advertising purposes). For other cases, such as when an app uses

"supporting" third-party services (i.e., 𝑟=Third-party and 𝑞=Provide
service), data usage still serves the first-party’s purposes, and hence
we set 𝑒=First-party. The receivers of data flows are resolved by

checking the data’s destination URL with the package name, the pri-

vacy policy URL and well-known analytics/advertisement lists [2].

Note that purpose-served entity 𝑒 is not supported by MobiPurpose.

PurPliance uses dynamic analysis to exercise the apps and

capture their network data traffic. It has 2 advantages over static

analysis: (1) real (not just potential) execution, hence reducing false

positives, and (2) destination of data, which can be determined

dynamically on the server side.

By analyzing purposes of data flows, PurPliance can distin-

guish more fine-grained intentions of data usage than entity-only

approaches like PoliCheck [8]. In particular, the 1st party can collect

data for its own marketing purposes. For example, Wego Flights

Data Type Precision Recall F1 Support

Identifiers 0.98 0.92 0.95 141

Geographical location 0.98 0.94 0.96 67

Device information 0.98 0.89 0.93 45

Network information 1.00 0.92 0.96 26

User profile 0.89 1.00 0.94 16

Average 0.97 0.93 0.95 59

Table 5: Data type extraction performance.

app sends a client ID to its own server at 𝑠𝑟𝑣 .𝑤𝑒𝑔𝑜.𝑐𝑜𝑚 with the

request path /𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑠/𝑣𝑖𝑠𝑖𝑡𝑠 , so the collection of user ID can be in-

ferred to be for the app’s purpose of Marketing Analytics. The sent

data’s semantics is especially useful to distinguish data transfer to

a business partner of the app which is not a popular advertisement

network or analytic service provider.

5.3 Data Type Extraction
Using the corpus from MobiPurpose [33] which contains manually-

annotated data types for key–value pairs of apps’ network traffic, we

identified patterns of the key-values for each data type. The corpus

has 5 high-level data types (listed in Table 5) that are common in

app data communication: identifiers (i.e., hard/software instance

and advertising IDs), network information (e.g., types of network),

device information (e.g., device types and configurations), location

(e.g., GPS coordinates) and user account information (e.g., user

name, password and demographics). MobiPurpose dataset does not

distinguish types of ID (i.e., advertising, hardware and instance ID)

which are frequently used by developers for overlapping purposes.

The distinction can be achieved by finer-grained data type labels.

However, developing such a dataset is beyond this paper’s scope.

Data Type Features. There are 2 types of patterns: special strings
and bag-of-words. The key–value strings are first matched by

special-string patterns which comprise unigrams, bigrams, reg-

ular expressions and bags of words. If no match is found, an English

Word Segmentation model [32] was used to segment the key–value

pairs into separate words and construct a bag of words. For exam-

ple, "sessionid" is separated into session and id. The occurrence of
the word id indicates this is an identifier. These patterns become

6-component feature vectors where each component is whether

there is any matched pattern or not. The last component is set to 1 if

there is no matched pattern for the 5 data types. We tried 4 types of

classifiers (Logistic Regression (LR), Multi-Layer Perceptron (MLP),

Random Forest (RF) and Support Vector Machine (SVM)) to clas-

sify these features. The best-performing classifier is found to be

Random Forest with 200 estimators.

Performance Evaluation. The corpus is randomly divided into

a development set (80%) for developing string patterns and a test

set (20%) for evaluating 5 data-type classifiers. We remove types

with too few (i.e., less than 20) samples. The classifiers achieve 95%

F1 score with 97% precision and 93% recall rates on average. The

precision is more than 89% on all data types. The high accuracy indi-

cates the regularity in key and values which were programmatically

produced by the apps. The lowest recall is of the device information
data type because the classifier misclassifies some samples which



Purpose Class Prec. Rec. F1 Sup.

Production - Provide service 0.76 0.81 0.78 15

Production - Personalize service 0.85 0.66 0.74 18

Production - Security 0.81 0.73 0.77 16

Marketing - Provide ad 0.86 0.86 0.86 76

Marketing - Marketing analytics 0.77 0.85 0.81 72

Average 0.81 0.78 0.79 39

Table 6: Purpose prediction performance on the data flows
in the test set. The total number of samples is 1413. The
classifiers are tuned for the extraction precision. The met-
ric columns are Precision/Recall/F1/Support in this order.

look like device IDs, such as clientId: Huawei+Nexus+6P, but are
actually a device model. The detailed performance results of the

classifiers are provided in Table 5.

5.4 Data Traffic Purpose Inference
Data Usage Purpose Features. PurPliance uses the same fea-

tures as those in MobiPurpose to predict the purposes of each

key–value pair in the transferred data. There are 6 features in 3

groups based on the destination URL, sent data and app package

name. The first group of features are based on the usage inten-

tion embedded in the semantics of the destination URL and sent

data which have a form of 𝑠𝑐ℎ𝑒𝑚𝑒 : //ℎ𝑜𝑠𝑡/𝑝𝑎𝑡ℎ. The second fea-

ture group encodes the characteristics of the data types in the

sent data such as the number of key-value pairs. The third fea-

ture group shows the relation between the app and the server. For

example, the data sent to 𝑐𝑏𝑐2015.𝑝𝑟𝑜𝑑1.𝑠ℎ𝑒𝑟𝑝𝑎𝑠𝑒𝑟𝑣 .𝑐𝑜𝑚/𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠
by app 𝑐𝑜𝑚.𝑠ℎ𝑒𝑟𝑝𝑎.𝑐𝑏𝑐2015 is likely to the app’s server. They are

encoded in 291-dimensional vectors (Table 15 in Appendix E).

Purpose-Classification Dataset. The purpose classification models

were trained on MobiPurpose corpus [33] which contains Android

apps’ network data traffic. We obtained a total of 1413 samples.

The data types and purposes of each key–value pairs contain labels

created by 3 experts. We aggregated purpose labels into a single

purpose label by using majority votes, following the method in the

original paper [33]. Specifically, a sample is classified as a purpose 𝑝

as the most common label from the annotators. The dataset has 24

categories in MobiPurpose taxonomy. We manually mapped them

to 7 classes in PurPliance (as shown in Table 17, Appendix G). The

final 5 purpose classes are listed in Table 6.

Performance Evaluation. Similar to data type classification, we

experimented 4 types of machine learning models: LR, MLP, RF

and MLP. The MLP uses ReLU activation and Adam optimizer

with a fixed learning rate of 10
−5
. The Random Forest has 200

estimators. We used random search for the hidden layers of 2-layer

MLP, regularization strength (C) of Linear Regression models with

range 0.1–10 estimators (range 100–200) for Random Forest. The

evaluation was done on the dataset using 10-fold cross validation.

Similar to [33], we removed purpose classes that have too few (i.e.,

less than 20) samples, such as the Other purpose class.

The average F1 score is 79% (81% precision and 78% recall). Pro-
vide ad and Marketing analytics have the highest F1 scores of 86%

and 81%, respectively. The lowest F1 score is of the Personalize ser-
vice class since it is challenging to distinguish this class from other

classes such as Provide service. The results are given in Table 6.

We perform an ablation study to evaluate the effectiveness of the

features used to predict the purposes. The results (listed in Table 16

in Appendix E) show that the type of the transferred data is the most

effective feature that improves the F1 score by 4%. The number of

key–value pairs also improves F1 by 2% since there is a correlation

between this feature and the data purposes (e.g., analytic services

often collect more key–value pairs (10+) than the rest [33]).

6 CONSISTENCY ANALYSIS
This section formalizes the detection of purpose inconsistencies

within privacy policies (called policy contradictions) as well as those
between the policies and the actual data collection and sharing be-

havior of the corresponding apps (called flow-policy inconsistencies).

6.1 Semantic Relationships
Each parameter in a privacy statement is mapped to an ontology

(e.g., data object ontology and purpose taxonomy) which defines

relationships among the terms used. We extend the semantic equiv-

alence, subsumptive relationship and semantic approximation of

PoliCheck [8] to data-usage purposes as listed in Table 7. 𝑅1 is

defined in Definition 6.4, 𝑅2 – 𝑅4 are defined in Definition 6.5, and

𝑅5 – 𝑅9 are defined in Theorem 6.6 (proved in Appendix D).

Definition 6.1 (Semantic Equivalence). 𝑥 ≡𝑜 𝑦 means that 𝑥 and
𝑦 are synonyms, defined under an ontology 𝑜 .

Definition 6.2 (Subsumptive Relationship). Given an ontology 𝑜
represented as a directed graph in which each node is a term and
each edge points from a general term 𝑦 to a specific term 𝑥 included
in 𝑦 (i.e., 𝑥 "is a" instance of 𝑦), 𝑥 <𝑜 𝑦 means there is a path from
𝑦 to 𝑥 and 𝑥 .𝑜 𝑦. Similarly, 𝑥 ⊑𝑜 𝑦 ⇔ 𝑥 <𝑜 𝑦 ∨ 𝑥 ≡𝑜 𝑦 and
𝑥 =𝑜 𝑦 ⇔ 𝑦 <𝑜 𝑥 .

Definition 6.3 (Semantic Approximation). The semantic approxi-
mation relationship between two terms 𝑥 and 𝑦, denoted as 𝑥 ≈𝑜 𝑦, is
true if and only if ∃𝑧 such as 𝑧 <𝑜 𝑥 ∧ 𝑧 <𝑜 𝑦 ∧ 𝑥 @𝑜 𝑦 ∧ 𝑦 @𝑜 𝑥 .

Definition 6.4 (Purpose Equivalence). Two data-usage purposes
are semantically equivalent (𝑒𝑖 , 𝑞𝑖 ) ≡𝜋 (𝑒 𝑗 , 𝑞 𝑗 ) if and only if there
exist ontologies 𝜖 and 𝜅 such that 𝑒𝑖 ≡𝜖 𝑒 𝑗 ∧ 𝑞𝑖 ≡𝜅 𝑞 𝑗 .

Definition 6.5 (Purpose Subsumption). (𝑒𝑖 , 𝑞𝑖 ) <𝜋 (𝑒 𝑗 , 𝑞 𝑗 ) if and
only if there exist ontologies 𝜖 and 𝜅 such that 𝑒𝑖 <𝜖 𝑒 𝑗 ∧ 𝑞𝑖 ≡𝜅 𝑞 𝑗
or 𝑒𝑖 ≡𝜖 𝑒 𝑗 ∧ 𝑞𝑖 <𝜅 𝑞 𝑗 or 𝑒𝑖 <𝜖 𝑒 𝑗 ∧ 𝑞𝑖 <𝜅 𝑞 𝑗 .

Theorem 6.6 (Purpose Semantic Approximation). Given two data-
usage purposes 𝑝𝑖 = (𝑒𝑖 , 𝑞𝑖 ) and 𝑝 𝑗 = (𝑒 𝑗 , 𝑞 𝑗 ), there exist ontologies
𝜖 , 𝜅, and 𝜋 such that

(1) 𝑒𝑖 ≡𝜖 𝑒 𝑗 ∧ 𝑞𝑖 ≈𝜅 𝑞 𝑗 ⇒ 𝑝𝑖 ≈𝜋 𝑝 𝑗 ,
(2) 𝑒𝑖 <𝜖 𝑒 𝑗 ∧ 𝑞𝑖 ≈𝜅 𝑞 𝑗 ⇒ 𝑝𝑖 ≈𝜋 𝑝 𝑗 ,
(3) 𝑒𝑖 ≈𝜖 𝑒 𝑗 ∧ 𝑞𝑖 ≡𝜅 𝑞 𝑗 ⇒ 𝑝𝑖 ≈𝜋 𝑝 𝑗 ,
(4) 𝑒𝑖 ≈𝜖 𝑒 𝑗 ∧ 𝑞𝑖 <𝜅 𝑞 𝑗 ⇒ 𝑝𝑖 ≈𝜋 𝑝 𝑗 , and
(5) 𝑒𝑖 ≈𝜖 𝑒 𝑗 ∧ 𝑞𝑖 ≈𝜅 𝑞 𝑗 ⇒ 𝑝𝑖 ≈𝜋 𝑝 𝑗



Relation 𝑒𝑖 · 𝑒 𝑗 𝑞𝑖 · 𝑞 𝑗 𝑝𝑖 · 𝑝 𝑗

𝑅1 𝑒𝑖 ≡𝜖 𝑒 𝑗 𝑞𝑖 ≡𝜅 𝑞 𝑗 𝑝𝑖 ≡𝜋 𝑝 𝑗

𝑅2 𝑒𝑖 ≡𝜖 𝑒 𝑗 𝑞𝑖 <𝜅 𝑞 𝑗 𝑝𝑖 <𝜋 𝑝 𝑗

𝑅3 𝑒𝑖 <𝜖 𝑒 𝑗 𝑞𝑖 ≡𝜅 𝑞 𝑗 𝑝𝑖 <𝜋 𝑝 𝑗

𝑅4 𝑒𝑖 <𝜖 𝑒 𝑗 𝑞𝑖 <𝜅 𝑞 𝑗 𝑝𝑖 <𝜋 𝑝 𝑗

𝑅5 𝑒𝑖 ≡𝜖 𝑒 𝑗 𝑞𝑖 ≈𝜅 𝑞 𝑗 𝑝𝑖 ≈𝜋 𝑝 𝑗

𝑅6 𝑒𝑖 <𝜖 𝑒 𝑗 𝑞𝑖 ≈𝜅 𝑞 𝑗 𝑝𝑖 ≈𝜋 𝑝 𝑗

𝑅7 𝑒𝑖 ≈𝜖 𝑒 𝑗 𝑞𝑖 ≡𝜅 𝑞 𝑗 𝑝𝑖 ≈𝜋 𝑝 𝑗

𝑅8 𝑒𝑖 ≈𝜖 𝑒 𝑗 𝑞𝑖 <𝜅 𝑞 𝑗 𝑝𝑖 ≈𝜋 𝑝 𝑗

𝑅9 𝑒𝑖 ≈𝜖 𝑒 𝑗 𝑞𝑖 ≈𝜅 𝑞 𝑗 𝑝𝑖 ≈𝜋 𝑝 𝑗

Table 7: Data-usage purpose relationships. 𝑝𝑖 = (𝑒𝑖 , 𝑞𝑖 ) and
𝑝 𝑗 = (𝑒 𝑗 , 𝑞 𝑗 ). · denotes a relationship placeholder. 𝑅1 – 𝑅4 are
definitions, 𝑅5 – 𝑅9 are theorems.

Rule Logic Example
𝐶1 𝑑𝑘 ≡𝛿 𝑑𝑙 ∧ 𝑝𝑚 ≡𝜋 𝑝𝑛 (Device ID, k, Advertising)

(Device ID, ¬k, Advertising)
𝐶2 𝑑𝑘 ≡𝛿 𝑑𝑙 ∧ 𝑝𝑚 <𝜋 𝑝𝑛 (Device ID, k, Advertising)

(Device ID, ¬k, Marketing)

𝐶3 𝑑𝑘 <𝛿 𝑑𝑙 ∧ 𝑝𝑚 ≡𝜋 𝑝𝑛 (Device ID, k, Advertising)

(Device info, ¬k, Advertising)
𝐶4 𝑑𝑘 <𝛿 𝑑𝑙 ∧ 𝑝𝑚 <𝜋 𝑝𝑛 (Device ID, k, Advertising)

(Device info, ¬k, Marketing)

𝐶5 𝑑𝑘 =𝛿 𝑑𝑙 ∧ 𝑝𝑚 <𝜋 𝑝𝑛 (Device info, k, Advertising)

(Device ID, ¬k, Marketing)

𝐶6 𝑑𝑘 ≡𝛿 𝑑𝑙 ∧ 𝑝𝑚 ≈𝜋 𝑝𝑛 (Device ID, k, Advertising)

(Device ID, ¬k, Personalization)
𝐶7 𝑑𝑘 <𝛿 𝑑𝑙 ∧ 𝑝𝑚 ≈𝜋 𝑝𝑛 (Device ID, k, Advertising)

(Device info, ¬k, Personalization)
𝐶8 𝑑𝑘 =𝛿 𝑑𝑙 ∧ 𝑝𝑚 ≈𝜋 𝑝𝑛 (Device info, k, Advertising)

(Device ID, ¬k, Personalization)
𝐶9 𝑑𝑘 ≈𝛿 𝑑𝑙 ∧ 𝑝𝑚 ≡𝜋 𝑝𝑛 (Device ID, k, Advertising)

(Tracking ID, ¬k, Advertising)
𝐶10 𝑑𝑘 ≈𝛿 𝑑𝑙 ∧ 𝑝𝑚 <𝜋 𝑝𝑛 (Device ID, k, Advertising)

(Tracking ID, ¬k, Marketing)

𝐶11 𝑑𝑘 ≈𝛿 𝑑𝑙 ∧ 𝑝𝑚 =𝜋 𝑝𝑛 (Device ID, k, Marketing)

(Tracking ID, ¬k, Advertising)
𝐶12 𝑑𝑘 ≈𝛿 𝑑𝑙 ∧ 𝑝𝑚 ≈𝜋 𝑝𝑛 (Device ID, k, Advertising)

(Tracking ID, ¬k, Personalization)
𝑁1 𝑑𝑘 ≡𝛿 𝑑𝑙 ∧ 𝑝𝑚 =𝜋 𝑝𝑛 (Device ID, k, Marketing)

(Device ID, ¬k, Advertising)
𝑁2 𝑑𝑘 <𝛿 𝑑𝑙 ∧ 𝑝𝑚 =𝜋 𝑝𝑛 (Device ID, k, Marketing)

(Device info, ¬k, Advertising)
𝑁3 𝑑𝑘 =𝛿 𝑑𝑙 ∧ 𝑝𝑚 ≡𝜋 𝑝𝑛 (Device info, k, Advertising)

(Device ID, ¬k, Advertising)
𝑁4 𝑑𝑘 =𝛿 𝑑𝑙 ∧ 𝑝𝑚 =𝜋 𝑝𝑛 (Device info, k, Marketing)

(Device ID, ¬k, Advertising)

Table 8: Logical forms of logical contradictions (𝐶) and nar-
rowing definitions (𝑁 ). 𝑘 and ¬𝑘 abbreviate for and not_for,
respectively. The data flow has data type 𝑓𝑑 = IMEI and pur-
pose 𝑓𝑞 = Personalize ad.

6.2 Policy Contradictions
Definition 6.7 (Privacy Statement Contradiction). Two privacy
statements 𝑡𝑘 = (𝑑𝑐𝑘 , 𝑑𝑢𝑘 ) and 𝑡𝑙 = (𝑑𝑐𝑙 , 𝑑𝑢𝑙 ) are said to contradict
each other iff either 𝑑𝑐𝑘 contradicts 𝑑𝑐𝑙 or 𝑑𝑢𝑘 contradicts 𝑑𝑢𝑙 .

PurPliance’s consistency analysis comprises two steps. Using

the Definition 6.7 of contradiction between two privacy statements,

it checks the consistency of 𝑑𝑐 and 𝑑𝑢 tuples in this order. The

consistency of 𝑑𝑐𝑘 = (𝑟𝑘 , 𝑐𝑘 , 𝑑𝑘 ) and 𝑑𝑐𝑙 = (𝑟𝑙 , 𝑐𝑙 , 𝑑𝑙 ) is analyzed
by a Data Collection consistency model. PurPliance leverages

the PoliCheck consistency model in this analysis. However, the

PoliCheck consistency model cannot check the two policy state-

ments if both have a positive sentiment (i.e., 𝑐𝑘 = 𝑐𝑙 = collect) or

X does not collect Y X collects Y

X does not collect Y for Z Consistent Consistent

X collects Y for Z Contradictory Consistent

Table 9: Privacy-statement comparison when one of the
statement has no data usage purpose specified (𝑑𝑢 = 𝑁𝑜𝑛𝑒).

the two receivers do not have either a subsumptive or semantic

approximation relationship. In such cases, since no contradiction

was detected, PurPliance checks the consistency of data usage

statements 𝑑𝑢𝑘 and 𝑑𝑢𝑙 using a Data Usage consistency model. We

extend the PoliCheck model [8] for data usage purposes as follows.

The contradiction conditions and types of two data usage tu-

ples 𝑑𝑢𝑘 = (𝑑𝑘 , for, 𝑝𝑚) and 𝑑𝑢𝑙 = (𝑑𝑙 , not_for, 𝑝𝑛) are listed in

Table 8. There are 16 cases and 2 types of contradictions: logical
contradictions (𝐶1–𝐶12) and narrowing definitions (𝑁1–𝑁4). Logical

contradictions occur when 𝑑𝑢𝑙 states the exclusion of a broader

purpose from data usage while 𝑑𝑢𝑘 states the usage for a purpose

type in a narrower scope. On the other hand, narrowing defini-

tions have the not-for-purpose statement (where 𝑘 = not_for) in
a narrower scope than their counterparts. Narrowing definitions

may confuse readers and automatic analysis when interpreting the

privacy statements, especially when the two statements are far

apart in a document.

When two privacy statements are compared, if one of them has

no data-usage purpose specified (i.e., du = None), PurPliance flags

a contradiction only if they have forms ((𝑟𝑘 , 𝑛𝑜𝑡_𝑐𝑜𝑙𝑙𝑒𝑐𝑡, 𝑑𝑘 ), 𝑁𝑜𝑛𝑒)
and ((𝑟𝑙 , 𝑐𝑜𝑙𝑙𝑒𝑐𝑡, 𝑑𝑙 ), (𝑑𝑙 , 𝑓 𝑜𝑟, 𝑝𝑙 )), i.e., the positive-sentiment state-

ment has 𝑘𝑙 = 𝑓 𝑜𝑟 . Following this rule, "X does not collect Y" does

not contradict "X does not collect Y for Z" as they are translated to

((X, not_collect, Y), None) and ((X, collect, Y), (Y, not_for, Z)), respec-
tively. Table 9 lists the cases of this rule.

Example 2. Given two statements: "we use your personal data

only for providing the App" and "advertisers may use your device

ID to serve you with advertisements," a contradiction is detected as

follows. Due to the keyword only for, PurPliance excludes third
parties’ Marketing purposes that are not for providing the app and

translates the first sentence to 1 positive and 1 negated statement:

𝑠1
1
= (we, collect, personal data), (personal data, for, (anyone, Provide

service)), 𝑠2
1
= (third party, collect, personal data), (personal data,

not_for, (third party, Marketing)). The second sentence is translated

to 𝑠2 = (advertiser, collect, device ID), (device ID, for, (advertiser, Pro-
vide ad)). Since device ID < personal data, advertiser < third party
and Provide ad < Marketing, the first sentence’s negated statement

𝑠2
1
contradicts 𝑠2 of the second sentence under rule 𝐶4. PolicyLint

will not flag these sentences because it considers only the collection

tuples which are all positive sentiments in these sentences.

6.3 Flow Consistency Analysis
Definition 6.8 (Flow-relevant Privacy Statements). Aprivacy state-
ment 𝑡𝑓 = ((𝑟𝑡 , 𝑐𝑡 , 𝑑𝑡 ), (𝑑𝑡 , 𝑘𝑡 , (𝑒𝑡 , 𝑞𝑡 ))) is relevant to a flow 𝑓 =

(𝑟, 𝑑, (𝑒, 𝑞)) (denoted as 𝑡𝑓 ≃ 𝑓 ) if and only if 𝑟 ⊑𝜌 𝑟𝑡 ∧ 𝑑 ⊑𝛿
𝑑𝑡 ∧ 𝑒 ⊑𝜖 𝑒𝑡 ∧ 𝑞 ⊑𝜅 𝑞𝑡 . Let 𝑇𝑓 be the set of flow-𝑓 -relevant privacy
statements in the set of privacy statements𝑇 of a privacy policy, then
𝑇𝑓 = {𝑡 | 𝑡 ∈ 𝑇 ∧ 𝑡 ≃ 𝑓 }.



Definition 6.9 (Flow-to-Policy Consistency). A flow 𝑓 is said to be
consistent with a privacy policy𝑇 iff ∃𝑡 ∈ 𝑇𝑓 such that 𝑐𝑡 = collect ∧
𝑘𝑡 = for and �𝑡 ∈ 𝑇𝑓 such that 𝑐𝑡 = not_collect ∨ 𝑘𝑡 = not_for.

A data flow is inconsistent with a privacy policy if the Flow-to-

Policy Consistency condition is not met. For each flow extracted

from app behavior, PurPliance first finds the flow-relevant privacy
statements 𝑇𝑓 and classifies the flow as consistent or inconsistent

using the above definitions. Although finer-grained consistency

types can be used, such as Clear and Ambiguous disclosures as

in PoliCheck, we leave it as future work. For brevity, the defini-

tions only include cases where data-usage purposes are specified.

The conditions on purposes are not checked if the data purpose is

unspecified (i.e., du=None).
Example 1 creates a privacy statement ((third party, collect, per-

sonal_data), (personal_data, not_for, (third party, Marketing))). Trans-
ferring the user device IMEI number to an advertiser’s server creates

a data flow f=(advertiser, IMEI, (advertiser, Provide ad)). Because IMEI
< personal_data (via device_identifier), advertiser < third party, and
Provide ad < Marketing (relationship in the purpose taxonomy),

the data flow is inconsistent with the privacy statement.

7 SYSTEM IMPLEMENTATION
Semantic and Syntactic Analysis. PurPliance uses a neural SRL

model [4, 62] trained on OntoNotes 5.0 [55, 54, 57], a large-scale

corpus with 1.7M English words of news, conversations and we-

blogs and 300K proposition annotations. Each token is encoded into

vectors depending on its context by using BERT-base-uncased con-

textualized word embeddings [17, 69]. Spacy with en_core_web_lg
language model [20] was used for syntactic analysis and depen-

dency parsing. Analyzing 16.8k privacy policies took 2 hours on 1

machine equipped with 2 Nvidia Titan Xp GPUs.

Data Object and Entity Ontologies. The consistency analysis logi-

cal rules require all entities and objects to bemapped into ontologies

to check their subsumptive relationships. PurPliance extends the

data object and entity ontologies based on PoliCheck to check their

subsumptive relationship. Similar to the addition of SCoU verbs,

we only add data objects and entities that are frequently used in

data-practice statements to avoid noise from those used in unre-

lated sentences. PurPliance extracts data objects and entities by

using a domain-adapted NER model trained on PolicyLint’s dataset

of 600 manually-annotated sentences (see Appendix H for details).

Policy Crawler and Preprocessor. We developed a crawler and

preprocessor to collect the privacy policies of Android apps. Its

implementation is described in Appendix F.

Network Data Traffic Collection. PurPliance used a tool based

on the VPN server API on Android [24] to capture apps’ HTTP(S)

traffic which is the most common protocol in app–server communi-

cation [21]. A system certificate was installed on rooted phones for

capturing encrypted traffic. Each app was exercised with human-

like inputs generated by deep-learning-based Humanoid [41], built

atop Droidbot automation tool [40]. For each app, the experiment

ran for at most 5 min and stopped if there was no traffic generated

for more than 2 min. These timeouts were empirically determined

for a good trade-off between data coverage and the number of apps

that we want to explore. We used 5 smartphones with Android 8.

8 EVALUATION
8.1 Data Collection

App Selection. We first selected the top 200 free apps for each

of 35 categories on Google Play Store, excluding Android Wear

and second-level Game categories [1]. This step resulted in 6,699

unique apps. Second, from a collection of 755,879 apps crawled from

Google Play Store in May 2020, we randomly selected additional

28,301 apps that are different from the top apps in the first step and

have been updated since 2015. To this end, 35k unique apps were

selected. After removing apps with an invalid privacy policy, our

final app corpus comprises 23,144 apps with a valid privacy policy.

Privacy Policy Corpus. We create a policy corpus as follows. We

removed 6,182 duplicate policies from apps that share the same

policy from the same developer. To reduce noise from titles (such

as policy section titles), sentences with title-cased or all capitalized

words or with less than 5 tokens are removed. Our final privacy

policy corpus has 16,802 unique policies with 1.4M sentences. The

categories with the most and least apps are Game (3,889 apps/2,797

policies) and Libraries & Demo (166 apps/121 policies), respectively.

Fig. 5 (Appendix I) shows their distribution over app categories.

Capturing Network Traffic. We capture the traffic of only the apps

which have a valid policy to analyze the app-flow consistency. We

intercepted 3,652,998 network requests of 18,689 apps over 33 days.

Among those, we discarded traffic with empty-body requests or not

from apps with valid policies and apps which became unavailable

from Play Store at the time of testing. The final dataset has 1,727,001

network requests from 17,144 unique apps. The number of apps that

generated traffic is lower than the selected apps because they either

work offline or our automated input generation did not generate

any input which triggered any requests to the servers, or the apps

require login preventing our tool from using the service. These

apps contacted 19,282 unique domains (164,096 unique end-point

URLs) and sent 24,918,567 key-value pair data to remote servers.

The distributions of network data requests across domains and app

categories are described in Appendix J.

8.2 Privacy Statement and Flow Distributions
PurPliance extracts 874,287 privacy statements from 142,231 sen-

tences in 15,312 policies (93.6% of 16,362 apps with data flows

extracted). Of these, 225,718 (25.8%) statements from 43,421 (30.5%)

sentences contain extracted purpose clauses. PurPliance recog-

nized 112,652 privacy statements with a non-Other purpose class.

The most common purposes are Provide Service and Improve Service
which appear on 72.6% and 59.6% of the apps’ policies, respectively.

Fig. 2 shows the distribution of privacy statements’ purposes.

Using the models developed in Section 5, 701,427 unique data

flows from 16,362 apps were extracted. Each data flow comprises a

single key–value pair in the captured traffic of each app. 432,078

(61.2%) have a non-Other purpose and 282,984 (40.3%) have both

non-Other purpose and data type. The Other class is for data types

or purposes which our classifier was unable to infer such informa-

tion as a key–value of encrypted data. The most common data types

are Device Information and Identifiers which appear in 95.7% and

87.3% of the apps, respectively. Marketing Analytics and Provide Ad
are the most frequent purposes found in 94.1% and 78.7% of apps’



Figure 2: Distribution of purpose classes in the privacy state-
ments and data flows of mobile apps.

Figure 3: Distribution of data types in apps’ data flows.

data flows, respectively. These results indicate that apps commonly

collect both identifiable and anonymous information of devices to

deliver relevant advertisements and perform data analytics. The

distributions of the purposes and data types are shown in Figs. 2

and 3, respectively.

There is a mismatch between the distribution of purposes of data

flows and that of privacy statements. Although the most common

data-flow purposes are advertising and marketing analytics that are

present in more than 78.7% of the apps, these purposes are found in

privacy statements of only 56.5% and 33.4% of the apps, respectively.

The significantly lower presence of the purposes in privacy policies

indicates that declarations of data-usage purposes for advertising

and analytics are frequently omitted in apps’ policies.

8.3 End-to-end Detection of Contradictions
Evaluation Metrics. We evaluate PurPliance’s end-to-end de-

tection of contradictory sentence pairs in privacy policies. Testing

the performance at the sentence level assesses the usability of the

system better than at the low-level privacy statement tuples. A

human analyst would need to read whole sentences to understand

the context of a detected contradiction so that s/he can verify and

fix it. Therefore, a low false positive rate will help human analysts

reduce their effort of reviewing many non-contradictory sentences.

Dataset Creation. We create a ground-truth dataset of 108 policies

selected from the privacy policy corpus (Section 8.1). To increase

the diversity of the policies, we select policies of apps with different

levels of popularity as popular apps may have more resources to

create their policies than less popular ones. In particular, we ran-

domly select 36 apps in each of the 3 segments based on the number

of app installs: greater than 1M (3,144 apps), from 10k to 1M (10,482

apps), and less than 10k (3,176 apps). To have diverse document

structures, we exclude similar policies created from templates. They

are detected by a high TF-IDF cosine similarity [45] (greater than

0.95) and then manual verification that they have no significant

differences other than the company/developer names. Documents

that are not a valid privacy policy (e.g., terms of service or home

pages), due to errors in data collection and pre-processing, are also

excluded from the selection process.

Each privacy policy is independently annotated by 2 co-authors:

an advanced PhD student and a researcher at a major global com-

pany, both with more than 3 years of experience in privacy research.

We carefully read the policies and interpret the policy sentences

as fully as possible to identify pairs of contradictory data-practice

statements (detailed steps are described in Appendix K.1). Any dis-

agreements were then resolved during follow-up discussions after

every 10 policies were annotated. The annotation took two annota-

tors 108 hours in total (30 minutes/policy/analyst on average).

There are 189 pairs of contradictory sentences in 47 (43.5%)

policies. Of these policies, 32 (68.1%) contain 1–3, 12 (25.5%) contain

4–9, and 3 (6.4%) contain more than 9 sentence pairs. The dataset

has 5,911 sentences where each policy has an average of 110.8 (96.4

standard deviation) sentences. The selected apps and their statistics

are provided in Table 18 (Appendix K.2).

Experimental Configurations. To comparatively analyze the ef-

fects of the main components of PurPliance, we introduce the

following configurations. PurPliance-PA is a purpose-agnostic ver-
sion that does not extract purpose clauses and, thus, uses only non-

purpose transformation rules T1, T3, T4 in Table 4. PurPliance-SRL
is PurPliance-PA with PolicyLint’s ontologies and data-practice

verb list. Based on PolicyLint that uses the default parameters in its

open-source repository [6], PolicyLint-PO leverages PurPliance’s
more complete SCoU verb list and data-object/entity ontologies.

Evaluation Results. PurPliance has 95% precision and 50% re-

call, which are significantly higher than 19% precision and 10%

recall of PolicyLint. There are three main sources of PurPliance’s
improvements over PolicyLint. First, the semantic argument anal-

ysis improves the extraction of privacy statement tuples and in-

creases both precision and recall so PurPliance-SRL improves F1

score from 20% to 32% compared to PolicyLint-PO. Second, a more

complete data-practice verb list and data-object/entity ontologies

improve the coverage of sentences so F1 of PurPliance-PA in-

creases from 32% to 50% compared to PurPliance-SRL. The more

complete verb list and ontologies also increase the performance of

PolicyLint-PO from 13% to 20% F1 score compared to PolicyLint.

Third, the analysis of data-usage purposes improves the detection

of contradictions and increases the precision of PurPliance from

60% to 95% while recall is also enhanced from 43% to 50% compared

to PurPliance-PA. The results are listed in Table 10.

The analysis of data-usage purposes improves PurPliance’s F1
from 50% to 65% compared to PurPliance-PA. First, false positives
are reduced because of the inclusion of purposes in interpreting sen-

tences and more accurate interpretation of data-selling practices



Config Precision Recall F1

PolicyLint 0.19 0.10 0.13

PolicyLint-PO 0.23 0.18 0.20

PurPliance-SRL 0.46 0.24 0.32

PurPliance-PA 0.60 0.43 0.50

PurPliance 0.95 0.50 0.65

Table 10: Detection of contradictory sentence pairs.

Config Precision # Statements # Sentences

PolicyLint 0.82 85 47

PurPliance 0.91 160 68

Table 11: Performance of privacy statement extraction.

(e.g., sell and rent). For example, PurPliance does not flag sen-

tences "we do not sell personal data" and "we may disclose personal

data to comply with the law" because of different sharing purposes

(Marketing vs. Legality), while purpose-agnostic approaches do.

Second, the recall rate is enhanced because purpose-contradiction

sentence pairs, such as "we use your personal data only for provid-

ing services" and "advertisers may collect personal data to deliver

advertising", cannot be detected without purposes analysis.

The low precision of PolicyLint configuration is due mainly to

the fundamental change of the interpretation of privacy statements.

PolicyLint ignores purposes in statements and thus creates many

false positives. For example, PolicyLint’s interpretation of "we do

not share your personal data formarketing" as "we do not share your

personal data" contradicts many other data collection/sharing state-

ments in the policy. Moreover, our metrics are more fine-grained

than those used in PolicyLint [7], signifying the impact of Poli-

cyLint’s incorrect extraction. To characterize contradiction types in

policies, PolicyLint [7] measured the accuracy of detecting contra-

dictions between pairs of sets of sentences where sentences in a set

generate the same privacy statement tuples. However, a sentence

set may include both true-contradictory and false-positive ones.

The recall rate of PurPliance is still limited for three main rea-

sons: complex sentences (29.5%), cross-sentence references (25.3%),

and incompleteness of data-object ontologies (11.6%). In complex

sentences, data-practice statements are often buried among other

unrelated clauses (such as conditions and means of collection). The

complex meaning of multiple clauses makes the separation of data-

collection statements challenging. For example, "in the event of

a corporate merger, your personal data is part of the transferred

assets," implies the transfer of personal data without using any

data-practice verb. In addition, the sentence-level analysis cannot

resolve data types or entities that are defined in other sentences,

such as "this information" in "we do not collect this information."

In-depth Analysis. We compare the performance of extracting

privacy statement tuples, which is an important intermediate step

of PurPliance and PolicyLint. As shown in Table 11, the results

on 300 randomly selected sentences from the privacy policy corpus

demonstrate that PurPliance significantly outperforms PolicyLint

in extracting the privacy statement tuples. PurPliance has a 9%

higher precision (increased from 82% to 91%), extracts 88% more

privacy statements and covers 45% more sentences than PolicyLint.

Figure 4: Distribution of potential purpose contradictions.

Note that the precision at this step is lower than the final contra-

dictory detection because of further filtering in the later steps of

contradiction analysis. The detailed experimental procedures are

described in Appendix K.3.

8.4 Analysis of Policy Contradictions and
Flow-to-Policy Inconsistencies

PurPliance detected 29,521 potentially contradictory sentence

pairs in 3,049 (18.14%) privacy policies. Of these sentence pairs,

2,350 (7.97%) are purpose-specific, i.e., purpose-agnostic systems

will miss them. For flow-to-policy inconsistencies, PurPliance
detected 95,083 (13.56%) potentially inconsistent flows between

the actual behavior and privacy policies in 11,399 (69.66%) of the

apps with data flows extracted. Fig. 4 shows the distribution of the

purpose-specific contradiction types.

The most common contradiction types are𝐶1 and 𝑁1, indicating

the problematic discussion of broad data-object and purpose terms

in purpose-negated statements. For example, many apps state the

collected personal data is not used for third parties’ marketing pur-

poses but also mention other contradicting usage purposes. The

contradictions show that privacy policies frequently contain am-

biguous descriptions of their data-usage purposes. Similarly, the

high number of apps containing detected flow-to-policy inconsis-

tencies indicates a prevalence of inconsistencies in mobile apps.

8.5 Findings
Finding 1. We found an issue with statements about the collec-

tion of personal data for internal purposes only in 28 apps, many of

which have 100k-10M installs. Their policies state that "your Per-

sonal information we collected is used for internal purposes only."

However, it contradicts with "we do not rent or sell your Personal

information to third parties outside without your consent," because

the exception clause "without your consent" indicates the sharing of

personal data with third parties for third parties’ purposes. On the

other hand, the apps transferred a unique id and geographical loca-

tion to a third-party domain with a path client/v2/ads-service/ads.
Therefore, such data flows were inconsistent with the policies.

Finding 2. A common privacy policy template, used in 211 (0.92%)

apps in our corpus, contains contradictory statements. The policy

claims that their "agents and contractors may not use your personal

data for their own marketing purposes." However, the policy states



later that the app employs "3rd party ad serving systems" which

"allow user data to be utilized for advertising communication pur-

poses displayed in the form of banners and other advertisements

on [app name] apps, possibly based on user interests." While ad-

serving systems are one of their contractors, they use the personal

data for their advertising purposes (which is subsumed under mar-

keting purposes), and user data includes user personal data, hence

these statements are contradictory with respect to the purposes of

marketing and advertising.

Finding 3. Apps promise that the sharing is not for marketing

but later say they will. For example, a popular education app with

10M+ installs states "we do not share your personal data with third

parties or corporate affiliates for their direct marketing purposes."

However, the policy also states "we allow our service providers

(including analytics vendors and advertising networks) to collect

information about your online activities through cookies. These

third parties may use this information to display advertisements

on our application and elsewhere online tailored to your interests."

However, displaying targeted advertisements are direct marketing

and online activities (such as browsing history) that can uniquely

identify a person and can thus be considered as personal data [13].

Therefore, the latter statement is contradictory to the first statement

of no direct marketing purpose.

9 DISCUSSION
While PurPliance is designed to have low false positives with rea-

sonable coverage, systematic evaluation of its recall rate is challeng-

ing because labeling privacy policies is very complex and expensive.

SRL still remains a challenging task in NLP [28]. State-of-the-art

SRL models [51] achieved only 87% F1 score with 85.5% recall rates.

Furthermore, the SRL model used in PurPliance was trained on a

generic dataset [57] and has not yet been adapted to the privacy-

policy domain. Thus, its performance may be limited. However,

creating a domain-adapted SRL model requires a significant effort

due to the complexity of the semantic arguments [57] and large

model sizes [4]; this is part of our future inquiry.

PurPliance’s extraction of data flows from network traffic has

two limitations. First, it cannot decode certificate-pinned traffic

which, however, constitutes only < 5% of the traffic generated by

top free apps [33]. Second, the input generator used in PurPliance
also cannot exercise login-required apps that use external verifica-

tion information. Using advanced techniques to exercise certificate-

pinned and login apps will improve the coverage of an app’s execu-

tion paths, thus enhancing PurPliance’s recall rate. For example,

recently available TextExerciser [29] can be used to generate inputs

for the analysis of apps requiring a login. Although PurPliance
does not capture the traffic of certificate-pinned and login-required

apps, this limitation does not increase false positives, that we aim

to minimize. Therefore, we leave this as our future work.

Our analysis is based on client-side information only, so it has

limitations in detecting the ultimate purpose of processing on the

servers. Although the analysis assumes meaningful names of app

resources such as package names and URL hosts/paths, they do

not always reveal the true purposes of data flows, so the extraction

cannot determine purposes of certain data flows (i.e., increase false

negatives). However, predicting the purposes of app behavior still

provides evidence of the presence of data-usage purposes which

is useful for our goal of detecting inconsistencies.Determining the

exact usage purposes of data requires knowledge of server-side

processing since usage information is lost once the data is received

by the servers. Therefore, the detection needs to be verified by hu-

mans such as regulators and service lawyers. Since the data purpose

classification has already been discussed at length and evaluated

in MobiPurpose [33], developing more sophisticated and accurate

data-purpose extraction is beyond the scope of PurPliance.

10 CONCLUSION
We have presented a novel analysis of data purposes in privacy

policies and the actual execution of mobile apps. We have developed

PurPliance, a system for automatic detection of contradictions

and inconsistencies in purposes between privacy policies and apps’

data transfer. Our evaluation results have shown PurPliance to

significantly outperform a state-of-the-art method and detect con-

tradictions/inconsistencies in a large number of Android apps.
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A SEMANTIC ARGUMENTS OF PURPOSE
CLAUSES

Semantic arguments of an event do not change even though the

syntactic structure of the sentence changes. For example, let us

consider the following sentences which express a data-usage event:

• [We]Arg0 do not [share]V [your personal data]Arg1 [with third

parties]Arg2 [for targeted ads]Argm-Pnc;

• [Third parties]Arg0 may not [collect]V [your personal data]Arg1

[to deliver targeted ads]Argm-Pnc.

While the purpose of delivering targeted ads is stated differently in

noun and verb phrases starting with for and to, it is consistently an

Argm-Pnc (purpose-not-cause) argument of the predicate. The data

object your personal data is also an Arg1 in both cases.

Table 12 lists the predicate-specific semantic arguments of pur-

pose clauses used in addition to the common arguments Argm-Prp
and Argm-Pnc.

Predicates Argument

use, save, check Arg2

analyze Argm-Adv

save, receive, solicit, record Arg3

receive Arg4

disclose, give, sell, send, transmit, provide C-Arg1

Table 12: Predicate-specific semantic arguments of purpose
clauses used by PurPliance.

B EXAMPLES OF PREDICATE-OBJECT PAIRS
Table 13 shows examples of purpose classification with PO pairs.

Purpose clause PO pairs

To provide personalized services (provide, personalized ser-

vices), (personalize, services)

To comply with laws (comply, laws)

For promotional purposes (, promotional purposes)

For scientific purposes (, scientific purposes)

Table 13: Examples of purpose classification with PO pairs.

https://doi.org/10.2478/popets-2020-0017
https://doi.org/10.2478/popets-2020-0017
https://doi.org/10.1145/2103656.2103702
https://doi.org/10.1145/2103656.2103702
https://www.termsfeed.com/blog/personal-vs-sensitive-information/
https://www.termsfeed.com/blog/personal-vs-sensitive-information/
https://doi.org/10.1145/3180155.3180196
https://doi.org/10.18653/v1/P16-1126
https://doi.org/10.1109/DSN.2016.55
https://doi.org/10.1109/DSN.2016.55
https://doi.org/10.1109/DSN.2016.55
https://doi.org/10.1109/DSN.2016.55
https://doi.org/10.14722/ndss.2017.23034
https://doi.org/10.14722/ndss.2017.23034


C POLICY PURPOSE PREDICTION
PERFORMANCE

The performance of policy purpose prediction is shown in Table 14.

High-level Low-level Precision

Production

Develop service 100.0

Improve service 100.0

Manage account 100.0

Manage service 100.0

Personalize service 83.3

Process payment 100.0

Provide service 100.0

Security 100.0

Marketing

Customer comm. 80.0

General marketing 100.0

Marketing analytics 100.0

Personalize ad 100.0

Provide ad 100.0

Promotion 100.0

Legality General legality 100.0

Other Other purposes 100.0

Average 97.8

Table 14: Policy purpose prediction performance on test set.

D PURPOSE APPROXIMATION PROOF
The following is the proof of Theorem 6.6.

Proof. (1) Because 𝑞𝑖 ≈𝜅 𝑞 𝑗 , exists 𝑞
′
such as 𝑞′ <𝜅 𝑞𝑖

and 𝑞′ <𝜅 𝑞 𝑗 . Therefore, (𝑒𝑖 , 𝑞′) <𝜋 (𝑒𝑖 , 𝑞𝑖 ) and (𝑒𝑖 , 𝑞′) <𝜋

(𝑒 𝑗 , 𝑞 𝑗 ). The existence of 𝑝 ′ = (𝑒𝑖 , 𝑞′) implies 𝑝𝑖 = (𝑒𝑖 , 𝑞𝑖 ) ≈𝜋
𝑝 𝑗 = (𝑒 𝑗 , 𝑞 𝑗 ).

(2) Because 𝑞𝑖 ≈𝜅 𝑞 𝑗 , exists 𝑞
′
such as 𝑞′ <𝜅 𝑞𝑖 and 𝑞

′ <𝜅 𝑞 𝑗 .

Therefore, (𝑒𝑖 , 𝑞′) <𝜋 (𝑒𝑖 , 𝑞𝑖 ). Also, because given 𝑒𝑖 <𝜖 𝑒 𝑗 ,

so (𝑒𝑖 , 𝑞′) <𝜋 (𝑒 𝑗 , 𝑞 𝑗 ). The existence of 𝑝 ′ = (𝑒𝑖 , 𝑞′) implies

𝑝𝑖 = (𝑒𝑖 , 𝑞𝑖 ) ≈𝜋 𝑝 𝑗 = (𝑒 𝑗 , 𝑞 𝑗 ).
(3) The proof is similar to (2) with the roles of entities 𝑒𝑖 and 𝑒 𝑗

swapped with purposes 𝑞𝑖 and 𝑞 𝑗 , respectively.

(4) The proof is similar to (3) with the roles of entities 𝑒𝑖 and 𝑒 𝑗
swapped with purposes 𝑞𝑖 and 𝑞 𝑗 , respectively.

(5) Because 𝑒𝑖 ≈𝜅 𝑒 𝑗 , exists 𝑒
′
such as 𝑒 ′ <𝜖 𝑒𝑖 and 𝑒 ′ <𝜅 𝑒 𝑗 .

Because 𝑞𝑖 ≈𝜅 𝑞 𝑗 , exists 𝑞
′
such as 𝑞′ <𝜅 𝑞𝑖 and 𝑞

′ <𝜅 𝑞 𝑗 .

Therefore, (𝑒 ′, 𝑞′) <𝜋 (𝑒𝑖 , 𝑞𝑖 ) and (𝑒 ′, 𝑞′) <𝜋 (𝑒 𝑗 , 𝑞 𝑗 ). The
existence of 𝑝 ′ = (𝑒 ′, 𝑞′) implies 𝑝𝑖 = (𝑒𝑖 , 𝑞𝑖 ) ≈𝜋 𝑝 𝑗 =

(𝑒 𝑗 , 𝑞 𝑗 ).
□

E DATA FLOW PURPOSE FEATURES
Features used for inferring usage purposes of data flows are listed

in Table 15. The ablation study results are shown in Table 16.

F PRIVACY POLICY CRAWLER AND
PREPROCESSOR

A crawler was developed to scrap the privacy policies of Android

apps. Given an app ID, the crawler first searches for the privacy

policy URL in the metadata of the app on Google Play Store. A full

HTML version of the web page is scrapped by using Google Chrome

controlled by Puppeteer web driver [22] so that dynamically ren-

dered privacy notice contents are downloaded correctly. Finally, Pol-

icyLint’s open-source privacy policy HTML pre-processing tool [5]

was used to remove extraneous GUI elements and HTML tags and

extract a plain-text version that contains well-formed sentences

of the privacy policy. If the privacy policy classifier determines

that the downloaded document is not a privacy policy, the crawler

searches for a privacy link within the page and repeats the HTML

downloading and extraction process.

A classifier based on Support Vector Machine (SVM) is devel-

oped to determine whether the downloaded web document is a

privacy policy or not. The model is trained on a set of 375 docu-

ments (199 positive and 176 negative examples). The training and

validation used 5-fold cross validation while 15% of the documents

were held out for testing. The classifier achieved F1 scores of 98.12%

and 96.49% for validation and testing, respectively. Similar to Poli-

cyLint [7], we filtered out sentences that do not contain any data

practice verbs or data objects, and sentences that start with an

interrogative word.

G MAPPING PURPOSES OF MOBIPURPOSE
TO PURPLIANCE’S PURPOSE TAXONOMY

The conversion from purpose categories in MobiPurpose to the

data-usage taxonomy of PurPliance is listed in Table 17.

H DOMAIN-ADAPTED NER MODEL
PurPliance uses a domain-adapted NER model to extract the data

objects and entities from sentences. We retrained the NER com-

ponent of the Spacy en_web_core_lg language model [20] on Poli-

cyLint’s dataset of 600 manually annotated sentences. 150 sentences

were randomly selected while the other 450 have one of the 9 sub-

sumptive relationship patterns. Similar to the procedure used in

PolicyLint [7], we trained the model on the training set of 500

samples until the loss converges after 180 epochs. The data object

recognition performance on the test set of 100 samples achieves an

83.1% F1 score (82.26% precision and 83.95% recall).

I DISTRIBUTION OF APPS AND POLICIES
Fig. 5 shows the distribution of apps and unique policies per app

category.

J DISTRIBUTION OF CAPTURED TRAFFIC
OVER APP CATEGORIES

Statistics of network traffic intercepted are shown in Fig. 6. The top

3 contacted domains are googleads.g.doubleclick.net with 230,309

requests, pagead2.googlesyndication.com with 86,767 requests, and

csi.gstatic.com with 73,939 requests. The traffic distribution has a

long tail: 13,269 (68.8%) domains were contacted by only one app

and 12,561 (65.1%) domains have less than 10 network data requests.



Group Feature Explanation Dimension

Sent data

(G1) URL bag-of-words Bag of words extracted from the request URL. 140

(G2) Sent data bag-of-words Bag of words extracted from the sent HTTP(S) data. 140

Data characteristics

(G3) Sent data types Enumeration of data types in the sent data. 6

(G4) Number of key-values Number of key-value pairs in the sent data. 1

(G5) Number of data types Number of data types in the sent data. 1

App-specific info (G6) App-destination similarity The package name has long common substrings with the URL. 3

Table 15: Features used in the purpose classification for data flows.

Features Precision Recall F1

G.1 0.69 0.67 0.68

G.1,2 0.73 0.68 0.70

G.1,2,3 0.75 0.73 0.74

G.1,2,3,4 0.77 0.75 0.75

G.1,2,3,4,5 0.79 0.76 0.77

G.1,2,3,4,5,6 0.81 0.78 0.79

Table 16: Ablation study of the purpose classification fea-
tures. The performance is on the test set.

Figure 5: Distribution of apps and unique policies per app
category.

K DATASET FOR END-TO-END
CONTRADICTION DETECTION

K.1 Annotation Procedure
Contradictions in each privacy policy are identified as follows. We

first look for any sentences that contain negated sentiment either

in data collection/sharing or in purpose clauses as their occur-

rences are much less frequent than positive ones. For each negated

sentence found, we try to find as many contradictory positive state-

ments as possible. The common keywords in negated statements

include "not", "never", "only for", "only to", "solely". However, be-

cause negated statements are expressed in various ways and their

meanings can only be determined by the context, we need to read

the whole policies to search for negated statements. To fully inter-

pret the policy sentences, we checked the meaning of each word and

the contextual sentences of each identified statement to understand

the specific intention and meaning of the terms in the sentence. We

also consulted external regulatory texts for the definition of certain

data types when necessary.

K.2 Dataset
The apps selected for the evaluation of end-to-end contradiction

detection and their statistics are shown in Table 18. The app with

the most contradictory sentence pairs is au.com.realestate.app. It
contains a statement that "We do not collect sensitive information

as defined under the Privacy Act 1988("Privacy Act")." However,

because sensitive information is a type of personal information as

defined by the Privacy Act [49, 68], the broad negated-sentiment

statement have a narrowing-definition contradiction with many

other sentences about collection/sharing of personal information.

K.3 Evaluation of Privacy Statement Extraction
Experimental Procedure. We compare PurPliance’s performance

in extracting privacy statements from policy document sentences

with PolicyLint [7], a state-of-the-art extraction method. To avoid

test data leakage [36], 285k (20%) sentences in the corpus were

set aside as the test set while PurPliance was developed and

fine-tuned on the other 80% sentences. 300 sentences were then

randomly selected from the test set for evaluation. The privacy

statements of PurPliance and PolicyLint from their parameter ex-

traction step are used. We used PolicyLint’s public implementation

without any changes. The NER models used by both systems are

trained on the same dataset, and hence they have similar capabilities.

In addition, since PolicyLint does not support purpose extraction,

purposes extracted by PurPliance and their combinations are not

counted in this evaluation. Three of the authors annotated the sen-

tences. We used majority votes and held discussions to reach a

consensus about the correctness of the extracted statements.

Metrics. Since our goal is to minimize false positives, the pre-

cision and the number of extracted statements are used as the

main performance metrics. Different from creating a dataset of

contradictory sentences in Section 8.3, there are a large number of

possible text spans that express a data type or a receiving entity in

each sentence and limitations of the contiguous entity annotation.

Therefore, it requires a significant amount of effort to create a com-

plete dataset of annotations of all policy statements and control its

quality [15].

Results and Analysis. Our results show that PurPliance extracts
more privacy statements with higher precision than PolicyLint.

The precision of PurPliance is 0.91, higher than 0.82 of PolicyLint.



MobiPurpose purpose class PurPliance purpose class

1 Search nearby places Production - Provide service

2 Geosocial networking Production - Provide service

3 Network switch notification Production - Provide service

4 Geotagging Production - Provide service

5 Transportation information Production - Provide service

6 Map and navigation Production - Provide service

7 Recording Production - Provide service

8 Location-based game Production - Provide service

9 Alert and remind Production - Provide service

10 Third-party login Production - Provide service

11 Geo localization Production - Provide service

12 Reverse geocoding Production - Provide service

13 Location spoofing Production - Provide service

14 Network optimization Production - Provide service

15 Interface customization Production - Personalize service

16 Location-based customization Production - Personalize service

17 Signed-out user personalization Production - Personalize service

18 Anti-fraud Production - Security

19 Authentication Production - Security

20 User/device tracking for data analytics Marketing - Marketing analytics

21 Data collection for analytics Marketing - Marketing analytics

22 Data collection for advertising Marketing - Provide ad

23 User/device tracking for advertising Marketing - Provide ad

24 Data collection for advertising personalization Marketing - Personalize ad

Table 17: Conversion from purpose classes in MobiPurpose [33] to PurPliance taxonomy. This table does not present full
PurPliance taxonomy but relevant classes with ones in MobiPurpose.

Figure 6: Data statistics of 1,727,001 network requests intercepted. The left figure shows the distribution of requests among
domains. The right figure shows the distribution of requests among app categories on Google Play.

PurPliance extracted 160 statements from 68 sentences which are

88%more statements and cover 45%more sentences than PolicyLint.

Table 11 shows our experimental results.

An in-depth analysis shows the most common incorrect extrac-

tion of both systems is caused by the erroneous recognition of

data objects and receivers by NER models. Furthermore, since both

systems do not analyze the semantics of sentences, they extract

data-collection practices from non-data-collection statements such

as "data protection laws in Europe distinguish between organiza-

tions that process personal data ..." However, both systems employ

further filtering in the later steps of their pipelines so trivial incor-

rectness would not increase false positive rates of the whole system

significantly.

PurPliance extracts more statements than PolicyLint because

it can cover many grammar variations which are not included in

PolicyLint’s 16 sentence templates of data collection and sharing.

For example, PolicyLint missed all policy statements from "we do

not sell, trade, or otherwise transfer to outside parties your personal

identifiable information," because it did not recognize the long list

of multiple data action verbs.



App # Sent-Pairs # Sentences # Installs

1 au.com.realestate.app 31 264 1,000,000

2 com.rfi.sams.android 18 468 10,000,000

3 com.toongoggles.tv 13 137 100,000

4 in.followon.alumni 9 143 100

5 com.birthday.flowers.images 8 71 1,000

6 com.SuperAwesome.DragonVillageBlast 7 213 100,000

7 com.qarasoft.kosho 7 121 50,000

8 com.crazyplex.hotcoffeemaker 6 148 100,000

9 com.innovle.qtix 6 86 5,000

10 com.colorflash.callerscreen 5 77 1,000,000

11 com.mobibah.afanoromolovesms 5 35 10,000

12 com.theepochtimes.news 4 145 100,000

13 net.playtouch.becomeapuppygroomer 4 122 10,000

14 com.spicyyoghurt.pixiegame.free 4 37 100

15 com.appwallet.magictoucheffect 4 32 10,000

16 com.squareup 3 474 10,000,000

17 com.tappx.flipnsave.battery 3 285 1,000,000

18 com.greatclips.android 3 280 5,000,000

19 com.fishcrackergames.WhatBread 3 52 500

20 com.fontskeyboard.fonts 3 46 5,000,000

21 com.qvq.simpleball 3 45 500

22 com.grab.yourbaby 3 43 5,000

23 com.pdffilereader 3 36 1,000,000

24 com.visionsmarts.pic2shop 3 19 1,000,000

25 com.gi.talkingrapper 2 365 1,000,000

26 com.olo.kneaders 2 224 10,000

27 com.geeko.ivrose 2 163 1,000,000

28 com.ilsc.mygreystone 2 156 100

29 me.nextplus.smsfreetext.phonecalls 2 137 5,000,000

30 com.eivaagames.Bowling3DPro 2 79 1,000,000

31 com.dumpgames.virtual.single.dad.simulator.happy.father 2 75 500,000

32 theme.space.galaxy.planet.shining.aircraft.launcher.wallpaper 2 36 100

33 comethru.event.organizer 1 281 10

34 com.bravolang.chinese 1 272 1,000,000

35 com.sia.id00145 1 173 100

36 com.journedelafemme.bestwomanslove 1 89 1,000

37 com.lily.times.basset2.all 1 80 1,000,000

38 com.appybuilder.bmkbmk767.purerelationship 1 71 100

39 com.lwsipl.archightech.launcher 1 66 500,000

40 com.lexilize.notme 1 58 500

41 com.polaroid.cube.plus 1 56 1,000

42 kynguyen.app.mirror 1 43 1,000,000

43 com.repsi.heartrate 1 35 1,000,000

44 appinventor.ai_mssrnick.almohana 1 27 100

45 air.com.miracle.SeaRescue 1 24 500

46 photo.editor.collage.maker.photoeditor 1 12 1,000,000

47 net.moderndefense 1 10 10,000

Total 189 5911

Table 18: Selected apps with contradictory sentence pairs. # Sent-Pairs stands for the number of contradictory sentence pairs.
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