
A method of Verifying Web Service Composition
Thang Huynh Quyet

Hanoi University of Technology
Number 1, Dai Co Viet Street

Hanoi, Vietnam
84-4-38692463

thanghq@it-hut.edu.vn

 Quynh Pham Thi
Hanoi National University of

Education
Number 136, Xuan Thuy Street

Hanoi, Vietnam
84-904000240

ptquynh@hnue.edu.vn

Duc Bui Hoang
Hanoi University of Technology

Number 1, Dai Co Viet Street
Hanoi, Vietnam
84-972347051

ducbuihoang@gmail.com

ABSTRACT
Service composition is one of the primary tasks in developing
service-oriented systems. However, there are currently some
challenges to check its correction. In this paper, we propose a
visual methodology and a tool for verifying business processes
written in BPEL by using the SPIN model checker. We present
algorithms to translate BPEL processes into PROMELA
programs via labeled control flow graphs. The use of label
control graphs in the tool will help regular users understand
BPEL business processes and the verification process with a
model checker more easily. Finally, the Spin model checker will
verify important properties of the PROMELA program that
represents a BPEL business process..

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model checking.

General Terms
Algorithms, Languages, Verification.

Keywords
BPEL, SPIN, PROMELA, software verification.

1. INTRODUCTION
Building software systems based on web services has brought
huge benefits such as decreasing cost, avoiding risk and easy
maintenance. In those, the composition of web services which
are executed following a business process is a significant
requirement. BPEL (Business Process Execution Language) [1]
was created in order to do that task.
One significant requirement when creating BPEL processes is

the verification of their correctness. Today, many researches
have been conducted to solve this problem [3]. These researches
SPIN [2] is a popular model checker that verifies programs
written in PROMELA. Although it’s possible to transform
directly from BPEL processes into PROMELA programs, that
method does not help users understand the specifications of the
BPEL processes and verified models.
In this paper, we propose another method that verifies BPEL
processes using SPIN model checker. In our method, a BPEL
process is transformed from an XML document to a graph
visually. Key information of the process is preserved and
arranged neatly on graph. After that, the graph form is
transformed into a PROMELA program which is verified by
SPIN. In this paper, we focus on the problem related to
synchronization dependencies in a BPEL process.
The rest of this paper is organized as follows: Section 2 gives a
transformation method from a BPEL process to a graph.
Section3 presents a transformation method from a graph to a
PROMELA program. The implementation is presented in
Section 4. We also provide a case study that illustrates the
whole method in Section 5. Section 6 gives related work and
discussion. The final section is about conclusion and future
works.

2. TRANSFORMATION FROM BPEL TO
LCFG
A BPEL process specifies a business process like a flowchart
[1]. Every element in the process is called an activity. Each
activity is either basic or structured. A structured activity
encloses one or many other activities. Thus, formally, we
propose Labeled Control Flow Graph (LCFG) which is a form
of graph for BPEL. The LCFG is derived from traditional CFG
and added label for each nodes in graph.
It is defined as follow: LCFG (N, E) is a directed graph, in
which set N is a set of nodes and set E is a set of edges that
represent exchanges between nodes. In set N, there is only one
Start and Stop nodes. Other nodes represent activities in BPEL
process. These nodes are labeled to describe important
information of activities. Edges in set E represent the order of
vertices.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SoICT’10, August 27–28, 2010, Hanoi, Vietnam.

Copyright 2010 ACM 978-1-4503-0105-3/10/08…$10.00.

155

Start

Stop
Description

Condition

Fork and Join

Transition edge

Figure 1. Elements in LCFG
Activities in BPEL are categorized into 2 types: basic activities
and structured activities. Every activity has a name attribute. So
that the name of a vertex is: activity type: activity name. The
assignment of label for every vertex type depends on its
corresponding activity.
The activities that relate to the operations of services such as
invoke, receive and reply activities provide service-related
information via the partner attributes that describe the called
portType and operation. However, the role of each activity will
determine the meaning of arguments that are required. For
example, invoke activities need both inputVariable and
outputVariable. In receive activity, the Variable attribute
represents the message that activity receives. On the other hand,
the Variable attribute represents the message that is sent by the
Reply activity.

Assignment activity assigns data from element from to element
to. These elements may be a variable, an attribute or an
expression. So we have to assign the labels at two levels. Labels
for assignment activity are from and to. After that, we continue
to label the element from and to which are Variables, Part and
Expression.

Sequence activity executes a sequence of activities. Thus, this
activity is described by a set of vertices that represent a
sequence of enclosed activities.

If activity is a branching activity. A branch is executed when a
condition is satisfied. So we need to add condition vertices.
Each branch consists of one or a set of activities.

While activity represents the repetition of activities when a
condition is true. It’s necessary to add a condition vertex. When
the execution of activities inside the loop completes, the
condition is checked again.

Flow activity describes concurrent activities. Each branch of
the flow activity is executed separately. Each branch is either a
basic or structured activity. However, there are synchronization
dependencies which are described in the link attribute. The
activities with <source> or <target> tags can be considered as
the start and the end of links. The activity which is labeled with
<target> is executed only if the joinCondition is evaluated to
true. If the joinCondition is omitted, the joinCondition is the
logical OR of all incoming links’ status so the activity will
execute when one of the link status is true. A link’s status can be
either ‘true’, ‘false’ or ‘unset’. If the suppressJoinFailure
attribute is set to ‘false’, then the is no fault to be thrown and the
out coming links’ status is set to false, otherwise, the
bpel:joinFailure fault will be thrown and be caught by a fault
handler. Each activity has one or many <source> or <target>

156

element. The <source> element contains the
<transitionCondition> element which specifies the condition
that determines when the <target> element is executed.
We simply consider the activities in each branch of the flow to
be sequential if they are source and target of a link. The activity
with the source label will execute first and the activity with the
target label will execute later. The number of the outgoing edges
of an activity equals to the number of its <source> labels. The
names of these edges are the names of links. If there is the
<transitionCondition> in the source label then we add a
condition vertex to this link.
A flow activity is represented by a fork and a join node. In
those, the label of the fork node stores information about the
links in the flow activity.

3. TRANSFORMATION FROM LCFG TO
PROMELA
To verify the process, the LCFG structure needs to be
transformed into a PROMELA program. Each PROMELA
program contains 3 main components: process, message
channels and variables. The graph’s main structure will be
transformed into main process; the labels of nodes are the
necessary information for the message channel definitions and
variables.
Variables in the PROMELA program are determined from the
labels with variable tag. If the data type of a variable exists in
PROMELA then we create a variable with the same data type. If
there is no corresponding data type of a variable, we will define
them as mtype. For the complex variable with parts, we will
create structured data type in PROMELA using typedef.
Each label portType corresponds with 2 message channels
which are in channel and out channel. The in channel is used for
receiving messages and out channel is used for sending
messages. The type of channel is the data type of messages that
transferred through the portType.
Each graph corresponds to a main proc of the program. The
transformation principles from LCFG to PROMELA
instructions are based on the similarity of semantics.

Node Instruction

portType_OUT ! output_var
portType_IN ? input_var
Receive and send information
between channels.

portType_IN ? variable
Receive data from a channel
into a variable

portType_OUT ! variable
Send data from a variable to a
channel

to=from
When assigning, we take into
account the data parts of
variables or XPath
expressions.

Sequential instructions.

If
:: Cond1 ->
:: …
:: else ->
fi

Do
:: Cond ->
…
Od

- Each branch
corresponds to a proc.

- Define each proc
according to the rules in
this table.

- In the main proc, create
run instructions that
invoke the above
processes.

Table 1. From LCFG to PROMELA

157

The following algorithm describes the graph traversal process
and transformation to PROMELA language.
Step 1: Create declaration and main process.
Step 2: Traversing LCFG

Step 2.1: Visit one vertex in graph
Step 2.2: If it is Stop vertex, go to Step 3; else go to 2.3
Step 2.3: Determine the type of the vertex and use the
transformation rules in Table
Step 2.4: If it a vertex corresponding to a structured
activity, go to step 2.1; else go to step 2.5
Step 2.5: Consider the label of the vertex, add new variable,
channel and data type into the declaration.

Step 3: Synthesize the declaration
Step 3.1: Determine the data types: typedef and mtype.
Step 3.2: Declare variables.
Step 3.3: Declare channels.

//The traversal process is sequential
This is a recursive algorithm which supports in visiting every
vertex in the LCFG. Step 2 is primary. In step 2, we have to
identify whether considered vertex is basic or structured. If it is
structured node, all its nested nodes will compose to a sub-
LCFG. The traversal processes of sub-LCFG and LCFG are
similar. This algorithm finishes when Stop node is visited.

4. IMPLEMENTATION
In this section, we will describe the overview architecture of a
tool built to transform and verify BPEL processes. The main
architecture of the tool is described in Figure 2.

Figure 2. Elements in tool

The main element of this tool is Transformer. This is the
element responsible for the transformation between forms: from
BPEL to LCFG and to PROMELA. The input of this element is
a BPEL process and the output is a PROMELA program
corresponding to the process. With that role, this element
contains packages corresponding to the transformation between
models.

Figure 3. Packages in Transformer

In BPEL model, the package model.bpel.abs and model.bpel.exe
contain hundreds of classes generated from BPEL2.0 XML
schema for abstract and executable processes by using JAXB
library [8]. TProcess in JAXB is an important class. Every
element in BPEL process can be found in the class. We use this
information to transform BPEL document into LCFG.
In package model.graph, LCFG class represents a LCFG. It
contains attributes and methods that are specific for elements of
LCFG as Section 2 shows. LCFG class inherits from GraphT
class – describes graph’s internal structure for storage and
Graph5 class – represents graph’s external structure for display.
In PROMELA model, there are 3 packages which specify
structure of PROMELA programs. The model.promela package
contains model classes of PROMELA language. The
model.promela.literal package contains model classes of literal
characters in PROMELA language. The
model.promela.literal.op package contains model classes of
operations in PROMELA language. Besides, we also implement
algorithm to translate from LCFG to PROMELA program in
this model.

5. A CASE STUDY
To illustrate the transformation process over different forms and
checking attributes of BPEL process, we will use the process
Loan Approval [7]. Roughly observation may make readers
falsely think that the process only contains the concurrent
activities. However, after more detailed analysis, we can see
these activities have synchronization dependencies. In the
following part, we will describe in detail each step of the
transformation process into different representations and
checking the required properties of this process.
The first step is to represent the BPEL process in the LCFG
form. The transformation principles were described in Section 2.
The whole process will be represented as a LCFG graph.
The first activity – flow activity is represented and labeled as
the following:

158

Then, receive activity – beside the common information of this
activity, it has 2 labels <source> and <transitionCondition>
elements. This activity has not <target> label so it is executed
immediately the fork vertex of the flow activity. This vertex
also is a start of 2 edges and has conditions that correspond to
the <transitionCondition>.

The following invoke activity has a <target> label and 2
<source> labels. Thus, the vertex representing this activity is the
target of the receive-to-assess edge and is the starting point of 2
other edges. These 2 edges have additional vertices that
represent the <transitionCondition>.

After that, the assign activity whose target is the assess-to-
setMessage edge and is the starting vertex of the setMessage-to-
reply. The <from> element is an expression and the <to>
element contains variables and parts.

The following invoke activity is represented by vertex which is
the target of receive-to-approval edge and assess-to-approval
edge. This vertex is also the starting point of the approval-to-
reply edge.

159

Finally, the reply activity has only 2 <target> elements.
Therefore, the vertex representing this activity is the target of 2
edges setMessage-to-reply and approval-to-reply. The next
vertex is the join vertex that represents the end of concurrent
activities. The final stop vertex indicates the end of whole
process.

After creating LCFG graph of BPEL process, the next step is to
transform it into a PROMELA program.
The following PROMELA program is the outcome of the
process:

typedef creditInformationMessage{
short amount

};

typedef approvalMessage{
bool accept

};

typedef riskAssessmentMessage{

bit level
};

chan loanServicePT_IN = [0] of {creditInformationMessage};
chan loanServicePT_OUT = [0] of {approvalMessage};

chan riskAssessmentPT_IN = [0] of
{riskAssessmentMessage};
chan riskAssessmentPT_OUT = [0] of
{creditInformationMessage};

chan loanApprovalPT_IN = [0] of {approvalMessage};
chan loanApprovalPT_OUT = [0] of
{creditInformationMessage};

creditInformationMessage request;
riskAssessmentMessage risk;
approvalMessage approval;

byte result=0;

proctype loanApproval(){

loanServicePT_IN ? request;
if
:: request.amount<10000 ->
 /*invoke*/
 riskAssessmentPT_OUT ! request;
 riskAssessmentPT_IN ? risk;
 if
 ::risk.level== 1 ->
 /* assign */
 approval.accept = true;
 ::risk.level== 0 ->

 /* invoke */
 loanApprovalPT_OUT ! request;
 loanApprovalPT_IN ? approval;
 fi;
 :: request.amount>=10000 ->
 /* invoke */
 loanApprovalPT_OUT ! request;
 loanApprovalPT_IN ? approval;
 fi;
 /* reply */
 loanServicePT_OUT!approval;
}

proctype customer(){
 approvalMessage customer_Receive;

 creditInformationMessage customer_Send;
/*randomize the amount*/
short r;
do
:: r++;/* randomly increment */
:: r--;/* or decrement */
:: break; /* or stop */
od;
customer_Send.amount=r;
loanServicePT_IN ! customer_Send;
loanServicePT_OUT ? customer_Receive;

}

160

proctype assessor(){
creditInformationMessage assessor_Receive;
riskAssessmentMessage assessor_Send;
end:riskAssessmentPT_OUT? assessor_Receive;

/*simulate the risk level*/
bit r;
if
:: true->r=1;
:: true->r=0;
fi;
assessor_Send.level=r;
riskAssessmentPT_IN!assessor_Send;

}

proctype approver(){
creditInformationMessage approver_Receive;
approvalMessage approver_Send;
end:loanApprovalPT_OUT?approver_Receive;

/*simulate the accept*/
bool r;
if
:: true->r=true;
:: true->r=false;
fi;
approver_Send.accept=r;
loanApprovalPT_IN!approver_Send;

}

init{

run loanApproval();
run assessor();
run approver();
run customer();

}
Table 2. PROMELA program for Loan Approval process

Finally, we use SPIN model checker to verify common
properties of the process Loan Approval. And the result shows
that the program ends at valid states and there is no error yet.

 (Spin Version 5.2.4 -- 2 December 2009)
 + Partial Order Reduction
Full statespace search for:
 never claim - (none specified)
 assertion violations +
 cycle checks - (disabled by -DSAFETY)
 invalid end states +
State-vector 96 byte, depth reached 65561, ••• errors: 0 •••
 1667332 states, stored
 65537 states, matched
 1732869 transitions (= stored+matched)
 0 atomic steps
hash conflicts: 959894 (resolved)
 218.113 memory usage (Mbyte)
unreached in proctype loanApproval

 (0 of 18 states)
unreached in proctype customer
 (0 of 10 states)
unreached in proctype assessor
 (0 of 10 states)
unreached in proctype approver
 (0 of 10 states)
unreached in proctype :init:
 (0 of 5 states)
pan: elapsed time 2.69 seconds
pan: rate 620518.05 states/second

Table 3. Result of checking common properties

Firstly, 4 processes: loanApproval, assessor, approver and
customer are created. Then, the customer creates a random
amount for request variable and sends it to loanApproval
process. The loanApproval process will continue according to
the value of the amount. It may interact with assessor and
approver when it executes. The process calls assessor to get the
risk level of the request when needed. If the risk level is not low
or the amount is greater than 10000 then loanApproval will call
approver. If the amount is less than 10000 and the risk level is
low then loanApproval will accept the request automatically.
Finally, loanApproval will continue to its end.
Beside the above properties, users can create queries in the form
of LTL formulas to check whether the process satisfies the
queries. For example, in the process Loan Approval, there is a
query: For requests of the same amount, is there any case in
which one of the requests is approved but the other is processed
differently?

To answer this question, we declare a variable named result of
type int. When the process starts, result is initialized to 0. If the
request is approved (after the activity assign), the value of
result is 1. If the request is checked further (after the invoke
activity of approver) then the value of result is 2. Beside the
declaration instructions and alternate the value of result, the
query will be written as the following:

#define accepted (approval.accept==true)

#define rejected (approval.accept==false)

!(<>(accepted && rejected))

The result of checking shows that the Loan Approval process
satisfies this LTL formula.

6. DISCUSSION AND RELATED WORK
There are currently verification techniques and tools using SPIN
for BPEL process. Fu, Bultan and Su [4] present a framework to
verify properties of a web service composition. Each BPEL
process is translated to a guarded automaton.
In [5], Nakajima presents a translation from BPEL to
PROMELA. This translation includes two parts. First, a BPEL
activity is mapped to an extended finite automaton. This

161

provides a formal model for BPEL activities. Second, the
automaton is represented in PROMELA.
In our methodology, the use of LCFG as a intermediate format
is a main idea. LCFG is very useful in translating from BPEL to
PROMELA, especially it can solve problem related to
synchronous dependencies.
In fact that, we can translate from BPEL to PROMELA code
directly. But, LCFG will bring following advantages:

- This is visual representation. It is easy to understand.
- We can extract information that unnecessary for

verification. The useful information is stored in each
node’s label.

- This is a complete solve for concurrent activities.
Depending on attributes of the <flow> activity, we
will restructure all its nested activities by a sequence
of activities or branch activities.

7. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a method of verifying a BPEL
process visually. The transformation from a BPEL process into
LCFG graph helps developers easily grasp the process and
removes the information which is unnecessary for the
verification. Besides, we have proposed solution for the
synchronization activity.
Then, the LCFG graph is transformed into a PROMELA
program. The label of the vertex stores necessary information
for this transformation process. The elements from the BPEL
process are mapped into PROMELA elements according to the
equivalence of semantics.
Finally, the verification of properties of the BPEL process is
performed by SPIN model checker. Beside the default properties
such as liveness and safeness, users can adds other checking
conditions via LTL formulas.

As such, this method not only takes advantage of the SPIN
model checker’s power but also open an approach of applying
SPIN easily and users need not to have too much theoretical
knowledge of model checking. Besides, we have given a method
of solving problems related to synchronization relationship
between concurrent activities.
In the future, we will continue improve the transformation
activities related to error catching in BPEL processes.
Furthermore, we will support users to create LTL formulas more
easily.

8. REFERENCES
1. http://www.w3.org/DOM/
2. http://spinroot.com/
3. Franck van Breugel and Maria Koshkina. Models and

verification of BPEL, September 2006.
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

4. X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL
web services. In S.I. Feldman, M. Uretsky, M. Najork, and
C.E. Wills, editors, Proceedings of the 13th International
World Wide Web Conference, pages 621-630, New York,
NY, USA, May 2004. ACM.

5. S. Nakajima. Lightweight formal analysis of web service
ows. Progress in Informatics, 1(2):57-76, November 2005.

6. S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to
Petri nets. In W.M.P. van der Aalst, B. Benatallah, F. Casati,
and F. Curbera, editors, Proceedings of the 3rd International
Conference on Business Process Management, volume 2649
of Lecture Notes in Computer Science, pages 220{235,
Nancy, France, September 2005. Springer-Verlag.

7. Business Process Execution Language for Web Services
(BPEL), Version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

8. https://jaxb.dev.java.net/

162

