
Mobile Plus: Multi-device Mobile Platform for Cross-device
Functionality Sharing

Sangeun Oh, Hyuck Yoo, Dae R. Jeong, Duc Hoang Bui, and Insik Shin
School of Computing, KAIST
Daejeon, Republic of Korea

{ohsang1213, yoohuck12, dragon812, ducbuihoang, insik.shin}@kaist.ac.kr

ABSTRACT
In recent years, the explosion of diverse smart devices such as
mobile phones, TVs, watches, and even cars, has completely
changed our lives. We communicate with friends through
social network services (SNSs) whenever we want, buy stuff
without visiting shops, and enjoy multimedia wherever we
are, thanks to these devices. However, these smart devices
cannot simply interact with each other even though they are
right next to each other. For example, when you want to read
a PDF stored on a smartphone on a larger TV screen, you
need to do complicated work or plug in a bunch of cables.
In this paper, we introduce M+, an extension of Android
that supports cross-device functionality sharing in a trans-
parent manner. As a platform-level solution, M+ enables
unmodified Android applications to utilize not only appli-
cation functionalities but also system functionalities across
devices, as if they were to utilize them inside the same de-
vice. In addition to secure connection setup, M+ also allows
performing of permission checks for remote applications in
the same way as for local. Our experimental results show
that M+ enables transparent cross-device sharing for var-
ious functionalities and achieves performance close to that
of within-device sharing unless a large amount of data is
transferred.

CCS Concepts
•General and reference→ Design; •Human-centered
computing → Mobile computing; Mobile devices;
Collaborative interaction; •Software and its engineering
→ Operating systems; Communications management;

Keywords
Multi-device Mobile Platform; Functionality Sharing; Re-
mote Procedure Call; Inter-Process Communication;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MobiSys’17, June 19-23, 2017, Niagara Falls, NY, USA
© 2017 ACM. ISBN 978-1-4503-4928-4/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3081333.3081348

1. INTRODUCTION
The mobile app ecosystem continues to grow and ma-

ture rapidly, and offers a wide variety of services, such as
SNS, shopping, entertainment, and healthcare. Mobile ap-
plications have become complex and diverse, and they have
come to use the functionalities1 of other applications or sys-
tem services. At the same time, users own multiple mobile
devices. A recent survey reported an average of more than
three devices per person [1], and users are easily tempted
to use on each device the functionalities available on other
devices.

Such trends present exciting opportunities for multiple
smart devices to be used together, including (1) video con-
ferencing on a camera-less smart TV using a smartphone’s
camera, (2) secure internet shopping on an unsecured pub-
lic device using payment service from one’s own private
smartphone, (3) replying to an email on a smartphone while
scrolling through its attached documents on a tablet, and
doing copy and paste between the two devices, and (4) play-
ing sensor-based games on a tablet while using sensors from
a smartphone, which can provide a more convenient method
to control them.

Many solutions have been proposed to enable this exciting
opportunity. First, many interesting studies have been done
to use the resources of other devices through the cooperation
of applications. Many apps [26, 32, 6, 7, 15, 31] are avail-
able for sharing specific resources, including screen casting,
cameras, and sensors. However, their applicability is quite
limited, because they work with their own custom applica-
tions but do not support unmodified applications. This im-
poses a great burden on those wanting to develop and deploy
such applications for each individual resource or functional-
ity. Second, a great deal of work [39, 14, 27, 37, 22, 23, 13,
21, 4, 42] has been done to develop a cross-device platform
that enables unmodified applications to use the resources
of other devices. However, these mainly focus on utilizing
system resources such as sensors and cameras but do not
support application functionalities such as in-app payment
and SNS login.

Here, we present a novel platform M+ (Mobile Plus). The
main goal of M+ is to allow unmodified applications to share
a wide range of functionalities across devices. That is, our
system is intended to be insensitive to the type of func-

1In this paper, we define functionality as a collection of ser-
vices, features, content, and resources. We classify function-
alities into two categories according to their providers: ap-
plication functionalities offered by applications, and system
functionalities by Android system services.

332

http://dx.doi.org/10.1145/3081333.3081348

tionality, and with no extra burden of application develop-
ment. To achieve the design goal, M+ extends the exist-
ing remote procedure call (RPC) scheme and its underly-
ing binder inter-process communication (IPC) mechanism
to multi-device environments. In other words, our key idea
is to intercept RPC messages (binder parcels) from a client
device and forward them to a server device to execute RPC
function logic. This approach suits our design goal for two
reasons. First, to the best of our knowledge, all existing ap-
plications are using RPCs to utilize the functionalities of
other applications or system services. Therefore, extending
the RPC scheme will naturally enable support of both ap-
plication and system functionalities in the multi-device en-
vironment. Second, RPC is transparent to the application
layer because it is supported at the platform layer. There-
fore, the RPC extension does not require modification of
applications.

M+ should address several fundamental challenges in ex-
tending within-device RPC to cross devices because Android
is designed under the assumption that client and server pro-
cesses run on the same device. (i) Android allows passage
of various type of references or handles as RPC parame-
ters, including shared memories, sockets, binders, and files,
for better performance. However, passing RPC arguments
in a call-by-reference manner does not work properly across
different devices. M+ detects reference-type arguments in
a functionality-agnostic way and makes their values avail-
able transparently between devices. (ii) Android app man-
agement logic will not work properly in the multi-device
environment: it cannot manage execution context and se-
mantics (e.g., app lifecycles, caller-callee information) of app
beyond the device boundary. Hence, M+ addresses this un-
precedented issue based on the concept of virtual activity
to enable unmodified applications to execute on different
devices without having their interaction semantics violated,
while incurring little change to Android system services. (iii)
The Android assumption that there is only one instance of
an application will not hold. Because each device can have its
own resident app, there could exist multiple instances of the
same app when multiple devices are joined for functionality
sharing. For this reason, M+ leverages the notion of remote
app registration to manage multiple instances properly for
correct security checks and communication support.

We proved the M+ concept with a prototype using Nexus
6 (smartphone) and Nexus 10 (tablet)2. It was demonstrated
that M+ allows existing applications on different devices
to successfully share functionalities such as Facebook Lo-
gin, Google Market Payment, Android Contacts, and PDF
Viewer; as well as system features (camera, sensor, notifi-
cation and clipboard). Interestingly, all these sharing pro-
cesses do not incur significant performance overhead and
behave almost like sharing within the same device in most
cases, unless they require transfer of a large amount of data.
The details about the experiment will be discussed in later
sections. In addition, it is worth noting that even if hetero-
geneous types of devices interact with each other, M+ can
easily support the interaction if the devices have just the
same RPC interfaces. This is possible because our system
is designed to provide functionality sharing via cross-device
RPC regardless the type of device.

2See http://cps.kaist.ac.kr/mobileplus for our demo video
illustrating the interaction between Nexus 6 and Nexus 10.

2. USE CASES
Service sharing: login, payment, and notification.

M+ can change the way people utilize services across de-
vices in many places. With M+, one could dispatch certain
services to designated devices or users for various reasons.
For example, a user might want to log into an SNS app
(e.g., Instagram) on a public device such as a free rental
tablet in a public library or a smart TV in her hotel room.
This comes with a risk to privacy (e.g., social media ac-
count hijacking) because public devices could have malware
or keystroke-logging software secretly installed. With M+,
she can log into the SNS app securely using her Facebook
login on her own smartphone. Moreover, a kid might feel an
impulse to purchase in-game items after failing to move on
to the next round in a mobile game. With M+, her mother
can be prompted to deal with the purchase order via Pay-
Pal or Google Play on her smartphone. With M+, a user
could receive notifications or alarms (e.g., incoming calls,
SMS messages, and low battery alarms) forwarded from a
smartphone and displayed on a TV.

Contents sharing: file, contact, and calendar. M+
can facilitate the way users access and interact with infor-
mation between devices. When checking emails on a smart-
phone, a user might want to view an attached PDF docu-
ment on a larger-screen device, such as a tablet. With M+,
this could be done right away with a single tap on the PDF
icon on a smart watch, rather than go through a cloud stor-
age service (e.g., Dropbox) or use an email client app on
the tablet. Interestingly, she could work on both devices at
the same time: write an email reply on a smartphone and
scroll through the attached documents on a tablet simulta-
neously. In this case, the user could also copy any part of
the attached document on the tablet and paste it on the
smartphone. With M+, a user could run video conferencing
or daily briefing apps on a TV, while accessing contact and
calendar data on her smartphone.

I/O sharing: camera. The digital world is now shifting
from 2D to 3D, and one great example is the success of 3D
selfie camera applications. However, in order to render 3D
images from a single camera, the camera must take multi-
ple images from different angles. Apparently, this condition
puts critical restrictions on development of many creative
uses. Instead, applications seek to construct 3D images using
multiple cameras. In this context, M+ provides a platform-
level I/O sharing so that those applications can use remote
cameras easily.

3. ANDROID BACKGROUND
Application components. Each functionality in An-

droid is implemented as one of four application components:
activity, service, content provider, or broadcast receiver. an
activity represents the user interface of an application, allow-
ing interaction between the application and the user. Every-
thing a user sees in an application is provided by activities.
For example, Facebook login activity provides a UI to al-
low users to enter ID and password. a service is designed
to perform long-running operations in the background. For
example, I/O functionalities, such as camera and sensor,
are provided with system services. a content provider gives
an interface for storing and sharing data using a relational
database (e.g. SQLite database). For instance, contact lists
and calendar information are managed by content providers.

333

http://cps.kaist.ac.kr/mobileplus

Client ServerStubWithin-device RPC

Android Platform

System-wide processes

Proxy

Activity manager

Service manager

Pass a proxy Register a proxy

Figure 1: Within-device RPC in Android

a broadcast receiver is for receiving system-wide messages.
For example, low battery level warning is broadcast and ap-
plications save their states to prevent any data loss.

Functionality sharing in Android. Android is de-
signed to allow applications (processes) to share their func-
tionalities through remote procedure calls (RPCs). Suppose
that a client application tries to use a functionality of a
server application. Here, function sharing is achieved be-
tween them if the client invokes RPC functions for the func-
tionality to the server. The invocation procedure typically
consists of two steps. The client first forwards a message
(called parcel) for calling a RPC function to the server. Upon
receiving the parcel, the server executes the RPC function
and passes the parcel containing its result to the client.

The Android RPC employs the inter-process communica-
tion (IPC) mechanism managed by the binder driver, be-
cause it is achieved across the process boundary. To deliver
parcels from the client to the server, the binder driver cre-
ates a binder connection: a route between the two processes
for the parcels. This procedure is called binding. Here, the
source and target endpoints of a binder connection are a
proxy and a stub. RPC invocations are always made in one
direction: from proxy to stub.

Figure 1 shows how binding works between client and
server processes. A client first requests a proxy to Android
system services; then it asks the service manager to share a
system functionality or asks the activity manager to share
an application functionality. We note that each individual
server has registered its proxy to the service/activity man-
ager when it is initiated. When the client obtains the proxy
from the server/activity manager, binding is completed in
one of two ways depending on the component type of server
functionality. The client binds to the server’s component di-
rectly if the component is a service or content provider, or
indirectly via the activity manager if the component is an
activity. The latter allows the activity manager to mediate
interaction between the client and server activities accord-
ing to their own interaction semantics. We will describe this
in more detail in Section 6.

4. SYSTEM DESIGN OVERVIEW
The main goal of M+ is to allow transparent sharing of

both application and system functionalities across multiple
mobile devices. To this end, M+ should be oblivious to the
type of functionality without incurring any extra burden
of application development. M+ extends the within-device
RPC scheme across different devices to achieve this goal.
Figure 2 shows an overview of M+ consisting of these main

Client

Security Management

Server

Cross-device IPC

M+ Platform (C-M+) M+ Platform (S-M+)

Security Management

Cross-device IPC

SSL

RPC Execution
Management

RPC Execution
Management

Client Device Server Device

Proxy

Stub

Stub

Proxy

Cross-device RPC

Figure 2: M+ design overview

components: cross-device IPC connection, cross-device RPC
execution, and security management.

Cross-device IPC connection. Towards transparent
cross-device RPC execution, M+ first seeks to deliver RPC
function calls to server processes on different devices with-
out requiring modifications to applications. To this end, M+
extends the existing binder IPC mechanism to create a cross-
device binder connection, yet offers the illusion of a within-
device IPC. We describe this in detail in Section 5.

Cross-device RPC execution. M+ aims to create an
environment in which RPC functions can be executed cor-
rectly on remote devices. Many RPC functions may not ex-
ecute properly across different devices, because Android is
designed to support RPC execution within a single device.
This gap engenders a different set of challenges which has
not previously been addressed to support cross-device RPC.
For example, M+ should manage execution context and se-
mantics properly across multiple devices when supporting
transparent cross-device RPC execution, because Android
does it only within the device boundary. As another exam-
ple, servers may request information about clients while ex-
ecuting RPC functions. M+ should make such information
available on server devices in a transparent manner. In Sec-
tion 6, we explain which challenges M+ faces and how it
addresses them.

Security management. As M+ allows multiple devices
to cooperate over the network, various security issues arise.
For example, M+ needs to distinguish multiple application
instances in multi-device environments in order to perform
permission checks accurately. In addition, the existence of
various kinds of attacks through the network threaten the
security of M+. Thus, M+ establishes a secure connection
between the two devices via the SSL protocol. We explain
how M+ addresses security concerns in Section 7.

5. CROSS-DEVICE IPC CONNECTION
We first need to extend the binder IPC mechanism to sup-

port cross-device RPC, addressing several issues. First, we
determine the right place to intercept binder parcels with-
out modifying applications. Second, we need to intercept the
smallest set of parcels to minimize an interception overhead.
Third, unmodified applications should be able to reach their
destinations across devices. This section explains how to ad-
dress such issues to establish an efficient cross-device binder
connection for unmodified applications.

334

5.1 Binder Parcel Interception
First, we need to intercept parcels from applications to

create a cross-device IPC channel transparently. One impor-
tant decision to make is how to determine the right place to
intercept parcels, to support a broad range of functionalities
without any modification of existing applications. As shown
in Figure 3, a parcel goes through a number of binder lay-
ers. The first layer, which is the interface layer, is designed
to provide the same function interfaces to both client and
server applications. In most cases, the function interfaces are
generated in application code through an interface language,
called Android interface description language (AIDL). If the
parcels were to be intercepted in the interface layer (as done
in [25]), function interfaces in existing applications must be
modified through recompilation; this is not an adequate so-
lution for our goal.

All the layers below the interface layer belong to the An-
droid platform. These layers are not included in application
code, but are dynamically linked during application’s run-
time. Therefore, in order to support existing applications
without modifications, parcels have to be intercepted at one
of these layers. M+ determines the parcel intercept point as
BpBinder, a binder object at the native IPC layer. Because
a BpBinder object is placed at the native IPC layer, all An-
droid applications (with either Java or native source codes)
should pass through this object for binder IPC. This means
that M+ can intercept any parcels at this layer to create
cross-device IPC channels for various types of functionali-
ties, no matter whether functionalities are based on either
Java or native source codes.

Another important issue is which parcels to intercept.
It would impose a considerable overhead if all the parcels
should be intercepted. Instead, M+ intercepts the small-
est set of parcels, which we call seed parcels, that initiate
interactions with other applications. Specifically, it inter-
cepts parcels to invoke some specific methods of Activi-

tyManager and ServiceManager, which fall into two cate-
gories: (i) ones to establish a new binder IPC channel such
as getService() of ServiceManager, bindService() and
getContentProvider() of ActivityManager, and (ii) others
to launch new application components such as startActiv-
ity() of ActivityManager. In this way, M+ narrows down
a set of parcels to intercept to the minimum, without having
to identify which parcels belong to which functionalities.

5.2 Cross-device Binder IPC
A binder IPC channel is established when a client obtains

a (binder) proxy object for a server’s (binder) stub, as de-
scribed in Section 3. One design principle that is important
for cross-device binder channels is to provide transparency
to both client and server processes. In other words, it should
provide the illusion to them that they are interacting within
the same device. To achieve this, client and server processes
are logically connected via three intermediate connections
with two M+ components (see Figure 2). For ease of presen-
tation, we often distinguish the roles of client-side M+ (C-
M+) and server-side M+ (S-M+). That is, client and server
processes perform binding locally with C-M+ and S-M+, re-
spectively; while C-M+ and S-M+ communicate through a
network connection.

Specifically, the binding procedure in the cross-device en-
vironment takes place as follows. First, a seed parcel is in-
tercepted and passed to C-M+. It then prompts a window,

Client Device Server Device

Binder Driver
Kernel

User space

Platform

Native IPC Layer

Java IPC Layer

Interface Layer

C-M+

APP

Kernel

User space

Platform

Binder Driver

Native IPC Layer

Java IPC Layer

Interface Layer

APP

IPC intercept S-M+Parcel

Figure 3: Binder IPC interception point

allowing the client user to decide which server applications
to use for the functionality of interest, if there are multiple
candidates, including remote ones. When the user decides
to use a remote device’s functionality, then C-M+ forwards
the parcel to S-M+, which passes it to the activity/service
manager on the server device. S-M+ obtains a proxy object
for the server’s stub when the binder driver creates a local
binder channel between S-M+ and the server process. The
proxy object is then passed back to C-M+. However, this
proxy is not valid on the client device, because it is device-
specific. So, C-M+ creates a new stub and provides its proxy
to the client process, establishing a local binder channel be-
tween them. After that, C-M+ and S-M+ maintain the map-
ping for the two local binder channels by bridging them with
a TCP network connection. With the procedure complete,
the client recognizes C-M+ as the server and sends all the
parcels related to the functionality of interest directly to
C-M+. These are then delivered to the server through the
cross-device binder connection.

6. CROSS-DEVICE RPC SUPPORT
As explained in Section 5, M+ supports transparent cross-

device binder connections, allowing a client to invoke a RPC
call on a remote server. Yet, there are many issues to address
in supporting cross-device RPC successfully. First, Android
applications often pass reference arguments for RPC calls
(call-by-reference) to improve efficiency within a single de-
vice. Second, client and server applications generally access
information about their counterpart in order to perform in-
teraction properly, assuming the information is available on
the same device. Third, Android is designed to manage the
execution of a client and a server while preserving their in-
teraction semantics mainly for a single device. Each of the
above issues makes it impossible for unmodified applications
to perform RPC interaction correctly across different de-
vices, if proper support is not provided. In this section, we
explain how M+ addresses each individual issue.

6.1 RPC Argument Handling
Android, designed for a single device, allows client and

server to pass RPC arguments under call-by-reference se-
mantics to achieve efficiency. For instance, when client or
server wants to make an extra binder connection, then they
send a proxy as an argument. In addition, when a client
wants to share some files (such as photos or PDF documents)
with other applications, the client passes either uniform re-
source identifiers (URIs) or file descriptors. File descriptors

335

for shared memory and Unix domain socket (UDS) also can
be used as RPC arguments to share a large amount of data
(e.g., camera frames) and to transfer data streams (e.g., sen-
sor readings), respectively.

To support cross-device RPC transparently, M+ needs to
identify all reference arguments used in each RPC call and
make the value of each reference available on the server de-
vice, without incurring any modifications to both client and
server applications. In addition, M+ should address such
issues in a functionality-oblivious manner, because a great
deal of effort is required to examine each individual function-
ality to determine which reference arguments are involved.

We categorize the reference arguments into four types de-
pending on which IPC channels they are associated with:
binder proxy, URI, UDS, and shared memory. For each type,
we will explain how M+ detects reference arguments within
parcels and deals with them for cross-device RPC. In ad-
dition, we will also explain how to resolve synchronization
issues for shared memory.

Binder proxy: M+ is able to detect binder proxy ob-
jects easily, if included in parcels, since the parcels include
metadata in reference to the proxy objects. Upon detecting
a proxy object, M+ creates a new binder IPC connection as
described in Section 5.

URI: Unlike the proxy object, parcels do not have any
information about URI. So, we re-design the parcel structure
so that it contains metadata in reference to the URI. We re-
wrote the writeToParcel() function of Android Uri class,
which is one of the most commonly used URI transmission
methods, so that the URI can be easily found in the parcel. If
a URI is found, S-M+ stores a copy of the corresponding file
on the internal storage of the server device, preventing other
processes from accessing it without proper permissions. S-
M+ then creates a new URI for the location and replaces the
original URI with the new URI before passing the parcel to
the server.

UDS and shared memory: UDS and shared memory
are stored in parcels in the form of file descriptor, and the
parcels contain metadata about file descriptors. Thus, M+
can detect file descriptors easily within parcels. Then, C-
M+ refers to the proc file system to identify the type of
file descriptor exactly. If the file descriptor is found to be
UDS, S-M+ creates a new UDS; then passes it to the server.
When this comes to shared memory in Android, it is further
divided into anonymous shared memory (ASHMEM) and
ION memory. S-M+ allocates corresponding shared mem-
ory and sends the file descriptor to the server. When al-
locating memory, it should use the same on both devices.
In the case of ASHMEM, C-M+ finds it easily with ash-

mem_get_size_region(), which is provided by the ASH-
MEM device driver. However, in the case of ION, its device
driver does not expose an API function that returns the size
of an allocated memory. So, instead of using such a function,
M+ obtains it by parsing parameters of the RPC function
that is used to allocate an ION memory (i.e., dequeque-

Buffer() of IGraphicBufferProducer). It will be easier to
solve the issue if the ION device driver can provide proper
API functions like ASHMEM.

Unlike other IPC connections, shared memory requires
synchronization, because either client or server can make
modifications to its own copy. To be synchronized correctly,
M+ must know when the memory begins to be modified
and when it ends. Android uses some RPC functions related

to lock protocols for ION memory (e.g., requestBuffer(),
queueBuffer() of IGraphicBufferProducer), and we re-
solve synchronization issues by using them. Typically, when
requestBuffer() is called to acquire a lock before mod-
ifying the memory, M+ prepares the ION memory where
data will be written. Similarly, when queueBuffer() is in-
voked to release the lock after finishing the modification, M+
copies the modified memory back to the remote device. We
note that synchronization issues are not considered for ASH-
MEM, because it tends to be utilized as a one-shot memory
to transfer a large amount of data to another process un-
like ION. For example, a content provider uses ASHMEM
to deliver results for database queries sent by other process.3

After that, the allocated ASHMEM is not used again by the
content providers, and only the receiving process accesses
and utilizes the shared memory. This means that M+ does
not have to care about its synchronization. We will discuss
more about ASHMEM in Section 10.

6.2 Remote App Registration
Client and server processes typically require some infor-

mation (so-called app metadata) about their counterpart
application when they begin to interact with one another.
For example, upon receiving a RPC request from a client, a
server process often requires information about the client ap-
plication to ensure that the client is eligible for the requested
functionality by checking its permissions and/or that the
client is authentic by checking its application signature.

On Android, each application comes with a configuration
file, called a manifest, that describes its metadata, such as
its components, package name, permissions, and application
signature. Upon the installation of an application, the pack-
age manager, which is one of the system-wide processes in
Android, stores and maintains its metadata. Then, applica-
tions and system services access the metadata of their coun-
terpart applications via the package manager.

Problems arise when a server process asks the package
manager to provide metadata of a client application run-
ning on a different device. A simple solution is to intercept
such a request, forward it to the client device, and bring the
metadata over the network. However, this solution will be
inefficient when such requests are made several times.

For this reason, M+ performs what we call (remote) app
registration to make app metadata available between differ-
ent devices. During app registration, the package manager
brings the metadata of an application from a different de-
vice, where the application was installed. The package man-
ager is then able to store and manage the metadata of the
remote application, providing it to local applications on the
same device. We note that an application can be installed
once on a home device and may be registered remotely to
any different device.

Client and server applications are remotely registered at
different times. Upon device discovery and secure channel
setup, two devices exchange a list of their own server appli-
cations and server applications are registered to the other
device. On the other hand, a client application is registered
to a different server device when it makes the first RPC
request to a server device. App registration requires user
agreement to proceed, the same as app installations do. This
is explained further in Section 7.

3As another example, ASHMEM is also used to manage
Dalvik machines, but it is beyond the scope of this paper.

336

Instagram Activity

Facebook Activity
(Login)

Single Device

(a) Single-device

Client Device Server Device

Instagram Activity

Virtual Activity Virtual Activity

Facebook Activity
(Login)

Remote
IPC

(b) Multi-device

Figure 4: Android back stack example: Instagram launches
Facebook login activity.

6.3 Cross-device Execution Management
In many cases, client applications launch server activities

when executing server functionalities. Here, a new execution
context is generated, and it should be managed properly
according to the execution semantics.

One of the most important kinds of context information
is the caller-callee relationship. This information is partic-
ularly useful for many reasons. The callee typically wants
to identify and verify who is making a request in order to
ensure it is legitimate and to pass the RPC results to the
caller correctly. In order to maintain such a caller-callee re-
lationship, the activity manager in Android uses a stack (the
back stack) to arrange a sequence of activities in the order
in which each activity is launched. Figure 4(a) shows an ex-
ample, where an activity of Instagram launches the Login
activity of Facebook on the same device. In addition to the
caller-callee relationship, the stack is also useful for indi-
cating which activities are currently active or paused; the
activity at the top of the stack is active, and all the others
below it are paused.

Execution semantics can broadly fall into two categories:
sequential and concurrent executions. While the former indi-
cates a situation where caller and callee activities should be
executed one by one synchronously to guarantee correct be-
havior, the latter allows a situation where caller and callee
can execute concurrently. It is important to preserve such
execution semantics when supporting cross-device RPC ex-
ecution.

In the case of sequential execution, when a new activity
is launched on the same device, it belongs to the same back
stack, as shown in Figure 4(a). When it comes to multiple
devices, however, caller and callee activities are placed in
separate stacks across different devices. For example, the In-
stagram activity remains in the stack on a client device, and
the Facebook Login activity is placed onto a new stack on
a server device. This causes a couple of problems. First, the
two back stacks of the client and server devices are indepen-
dent, and they do not capture the caller-callee relationship.
Second, the Instagram activity remains at the top of the
stack, and the activity manager considers it to be active.
That is, the Instagram activity will not be paused but will
continue to execute even before receiving a login result from
the Facebook activity. This may yield incorrect execution
behavior. One solution is to re-design the activity managers
in a way that they collaborate each other by exchanging
execution contexts across devices. However, this requires a
significant amount of modifications to existing activity man-
agers, which is not good for ease of deployment.

For these reasons, M+ employs the concept of virtual ac-
tivity to address the above problems, while incurring little
change to activity managers. A virtual activity is an arti-
ficial activity to maintain the caller-callee relationship un-
der the sequential execution semantics across different de-
vices. As shown in Figure 4(b), virtual activities are added
to each back stack of the client and server devices. Here,
virtual activities play two major roles. First, a virtual ac-
tivity is pushed to the top of the Instagram activity to keep
the Instagram activity in the paused state. This allows the
Instagram activity to wait to receive a login result from the
Facebook activity. Second, it builds a chain of caller-callee
relations across the two devices. In this chain, the virtual
activity on the server side has identifier information about
the client activity (Instagram). Thus, the Facebook activity
can identify what has been launched. In addition, through
this chain, the Facebook activity can send login results to
the Instagram activity. That is, the Facebook activity sends
a return value to a virtual activity on the server side, which
forwards the value to S-M+ such that it is finally forwarded
to the client device.

On the other hand, in the concurrent execution case, users
can execute caller and callee activities independently. The
activity manager puts the callee activity into a new sepa-
rate back stack, which its focus is set to. This causes the
callee activity to be active, while all activities in the other
stacks remain paused. The user can switch the focus to the
caller activity manually by pushing the menu button. This
way, the user can alternate the execution between caller and
callee activities on a single device. However, in multi-device
environments, M+ is able to run caller and callee activi-
ties truly concurrently across different devices. As an exam-
ple, consider a user reading an email on a smartphone. The
user can launch the activity of a PDF Viewer on a tablet to
open a PDF file attached to the email. She can then con-
tinue scrolling through the email for further reading and/or
start writing an email reply on the smartphone while reading
through the PDF file on the tablet at the same time. In this
way, M+ offers a new user experience through an unprece-
dented way of using unmodified applications over multiple
devices.

7. ENHANCING CROSS-DEVICE SECU-
RITY

In this section, we discuss a fundamental difference be-
tween M+ vs. Android from the permission system point of
view and describe how to extend it to close the difference. In
addition, because M+ uses the network as the medium for
data transmission, we describe what kind of new threats are
introduced and how M+ mitigates the vulnerability derived
from the network.

7.1 Cross-device Permission Check
Android uses a permission-based security mechanism to

restrict the types of operations (or functionalities) that each
application is allowed to perform, and so do many other pop-
ular mobile operating systems, including iOS and Windows
Phone. Because each Android application operates in a pro-
cess sandbox, applications must acquire the permissions for
additional capabilities needed to share resources and data
beyond the sandbox boundary. Because the Android per-

337

mission system is designed for a single device environment,
M+ extends it to a multi-device environment.

In Android, a client process is normally trusted when ac-
cessing the resource provided by another process. This is
because the same stakeholder is responsible for the client
process imposing a risk of misusing or abusing the resource,
and is exposed to the risk. In M+, however, the client pro-
cess is no longer be fully trusted when accessing resources
across devices. The user of a server device can be vulnera-
ble to the risk while little information is available about the
client process.

During app registration, M+ determines whether or not
to allow the client’s permission request at the discretion of
server device users. When a remote client appears to uti-
lize server functionality for the first time, M+ prompts the
server device user for consent. M+ informs the user of the
remote server process, including what kind of application it
is and which device it comes from; then asks the user to
grant the permissions that the client application requires.
For backward compatibility, M+ considers the client appli-
cation to require the same set of permissions as the one it
required when installed on its local device; such permissions
are declared in a configuration file, called a manifest file.

Once a client application is registered to a server device,
M+ allows server processes to carry out permission checks
for the client application as if it were a local application in-
stalled on the server device. In the Android permission sys-
tem, upon receiving a request from a client application for a
particular functionality, a server process may ask the pack-
age manager to get further information about the client ap-
plication. For example, Android system services (e.g., cam-
era service) will check the package manager the relevant per-
missions of the client applications before allowing them to
use the functionalities. Server applications (e.g., Facebook
for Login) may also ask the package manager to get the rel-
evant information about client applications, such as applica-
tion signatures. In M+, both existing Android applications
and system services can ask the package manager the rele-
vant permissions or information about remote client appli-
cations in the same way as the above, while no modification
is required to both client and local processes.

One of the key differences between Android and M+ is
that M+ allows applications to register to remote server de-
vices. This makes it possible for a single server process to in-
teract with multiple instances of the same application, while
each instance is either installed or registered to the server
device. Because each instance can be individually granted or
not granted during its installation or registration, it is im-
portant to distinguish each instance properly to do the per-
mission check correctly. Because M+ assigns a unique UID to
each individual application instance at its installation or reg-
istration, server processes can successfully identify individ-
ual application instances by calling getCallingUID(), which
returns the UID of the caller process. Because the binder
driver was in charge of returning the UID, we slightly mod-
ified Android Parcel class and getCallingUID() to deliver
the remote client’s UID instead of M+’s UID.

It is worthwhile to mention that some existing Android
applications recognize applications by their package names.
This works successfully in the Android single-device environ-
ment, because two or more instances of the same application
cannot be installed on the same device. However, package
names are no longer distinct identifiers in the M+ multi-

device environment. Thus, some applications may have to
change their logic to use UID for identifying application in-
stances in the M+ multi-device environment. To this end,
M+ provides an additional API, getCallingActivityUID(),
that returns the UID of a client (caller) activity.

7.2 Network Security
Because M+ uses the network as the medium for com-

munication and data transmission, the network can be a
source of vulnerability. Therefore, various network-based at-
tacks have presented as challenges. Packet sniffing attacks
capture the wireless traffic and export sensitive data (i.e.,
phone number, ID and password). Man-in-the-middle at-
tacks (MitM) [17] can eavesdrop or possibly change the com-
munication between a client and server believed to be com-
municating with each other. Also, adversary can operate the
server device maliciously by a packet replay attack [16] that
repeatedly transmit valid data. M+ has to be safe against
attacks such as these.

M+ leverages the popular Secure Sockets Layer (SSL) pro-
tocol [11] to mitigate the vulnerability derived from the net-
work. It is a challenge to establish an SSL channel without
requiring public key infrastructures (PKI) and public key
servers. Therefore, we use a pre-shared password for device
authentication and secure public key exchange. Although we
can simply transmit data encrypted by the shared password,
SSL provides advanced security features such as Perfect For-
ward Secrecy [5, 30]. With the pre-shared password, M+
provides security channels similar to WiFi Protected Access
with advanced encryption standard (AES) encryption [41].

To establish an SSL channel, a client device needs to know
the network address of its server device. Here, we assume
that the client has already discovered the server and knows
its address. As described in Section 10, this assumption
makes sense, because device discovery can be easily done
with existing technologies.

8. EVALUATION
We implemented an M+ prototype in Android and demon-

strated its complete operation of functionality sharing for
unmodified applications across multiple devices. M+ seam-
lessly enables Android applications to share a wide range of
functionalities. For compatibility, the prototype was tested
to see whether it works between different versions of An-
droid.

We measured the performance and power consumption of
M+. The M+ implementation used for our measurements
was based on Google Nexus 6 with the Android open source
project (AOSP) version 5.0.1, unless otherwise stated. Dur-
ing the measurements, we enabled all cores to run at the
maximum CPU frequency (2.65 GHz), and all devices were
connected to the same Wi-Fi access point. This connection
had a throughput of 24.9 Mbps and a round-trip time (RTT)
with the median, average, and standard deviation of (61.55,
62.80, and 37.69) ms, respectively.

8.1 Functionality Coverage
We first explore how broad a range of functionalities M+

can support unmodified applications. We installed and ran
twenty-seven different applications from the listing of top
free Android applications from Google Play, including Face-
book, the top social media application.

338

Type Client Ö Server Functionality Coverage
Max parcel
size (bytes)

Activity

Instagram Ö Facebook Login © 2,180

Candy crush Ö Facebook Login © 2,196

Line Ranger Ö Line Login 4 604

Gmail Ö Adobe Acrobat Reader PDF file viewing © 680

SMS Ö Browser Web page browsing © 588

Browser Ö Android System UI Web page sharing © 190,372

Gallery Ö Facebook Photo sharing © 1,160

Service

Application service
Real racing 3 Ö Google play store Payment © 39,316

Candy crush Ö Google play store Payment © 10,352

I/O system service

Real racing 3 Ö Sensor service Game control © 5,228

Ladybug Ö Sensor service Game control © 5,228

Camera2Basic Ö Camera service Camera preview © 15,512

Body messager Ö Vibrator service Vibration © 204

Non-I/O system service

Chrome Ö Clipboard service Copy & Paste © 1,540

SMS Ö Notification service Message notification © 1,500

Clock Ö Notification service Alarm notification © 4,324

Content Provider

Google drive Ö Downloads File download © 1,956

Dropbox Ö Downloads File download 4 2,528

True phone Ö Contacts Contacts management © 1,936

Simple contacts Ö Contacts Contacts management © 1,936

Google messenger Ö Telephony SMS management © 1,500

ZeroSMS Ö Telephony SMS management © 1,500

Table 1: Use case list for the functionality coverage test. Coverage is marked with © if M+ supports the use case correctly or
4 if it does so with user’s proper choice.

Table 1 shows a list of use cases, where client applica-
tions utilize various functionalities from server applications
or Android services on different devices. The fourth column
(labeled ”Coverage”) shows whether M+ supports each use
case. As shown in the table, M+ successfully supports cross-
device functionality sharing for a wide range of functionali-
ties, except the two use cases marked with triangles (4).

Those two use cases employ multiple independent binder
connections while sharing a single functionality. Line, one
of Japan’s popular messengers, returns an access token as a
login result through a separate binder connection that it ini-
tiates with a new seed parcel. Dropbox also uses two binder
connections initiated by two seed parcels, one for download-
ing a file and the other for naming the file. Those two binder
connections should be made between the same client and
server pair for correct operation. When a new binder con-
nection is requested with a seed parcel, a user is prompted
to select the right destination if there are multiple candi-
dates. Confusion may arise when there are multiple instances
of the same app across several devices. For example, when
Line initiates a new binder connection to pass an access to-
ken in response to Line Ranger’s login request, the user of
the Line device may be asked to select the right instance of
Line Ranger among multiple across different devices. If the
user makes the right choice, M+ can work correctly. How-
ever, if the user makes a wrong decision, such a use case
would not work properly. We will discuss possible solutions
in Section 10.

8.2 Performance and Power Consumption
We quantitatively evaluate performance and power con-

sumption of M+ in supporting cross-device functionality
sharing. We generated four types of micro-benchmarks de-
pending on which IPC connections are used: binder, URI,
Unix domain socket (UDS), and ION memory. In each micro-
benchmark, a client utilizes the functionality of a server
through one of the IPC connections. We ran each micro-
benchmark within a single device (labeled ”LOCAL”) and
across two devices with M+ (labeled ”M+ ”). Unless oth-
erwise stated, we repeated each experiment ten times and
herein report the average and standard deviation of these
measurements. We also report the overhead from using the
SSL connection.

8.2.1 Performance
Interception overhead: The time to intercept a parcel

for decision making can be considered as interception over-
head, if the destination of the parcel is a server process on the
same device. In order to measure such overhead, we wrote
a micro-benchmark program that repeated launch of a sim-
ple activity via the startActivity method 100 times. Our
experiment results show that it takes 17.79 ms on average
(standard deviation of 8.99 ms) to run the simple activity
on stock Android, and 20.23 ms on average (with a stan-
dard deviation of 19.51 ms) with M+. Thus, the intercep-
tion overhead of M+ is 2.44 ms on average. Though such
an overhead is not negligible, its impact on the overall sys-

339

LOCAL M+ LOCAL M+ LOCAL M+ LOCAL M+

10 100 1000 10000

0

10

20

30

40

Parcel Size (word)

El
ap

se
d

 T
im

e
 (

m
s) COMP

Binder
Network

Figure 5: Performance of binder communication. The X axis
is size of a parcel in words; each is four bytes in Android.

1

10

100

1000

10000

100 1000 10000

El
ap

se
d

 T
im

e
 (

m
s)

File Size (Kb)

LOCAL M+

Figure 6: Performance of communication using URI for file.
Note that the Y axis is log-scaled.

tem performance is quite limited since M+ intercepts only
seed parcels, which occupy a very small portion of the whole
parcel communication.

Binder: Figure 5 shows the time between when a client
sends a binder parcel to a server and when the client receives
a return signal from the server, as a function of the amount
of data included in the parcel. It also shows the percent-
age breakdown of average elapsed times. We broke down
the time into three stages: (1) ”COMP ” involves spend-
ing time in C-M+ and S-M+ to intercept and determine
its destination, (2) ”binder” involves the time spent in the
binder communication between Java applications and the
binder driver, including the time to copy data to the server’s
memory space, and (3) ”network” involves the time spent
on cross-device communication via M+. The figure shows
that it takes longer to send a larger amount of data through
binder and network, while network delays are the most sig-
nificant factor. It is also shown in the figure that M+ does
not impose much computation overhead. We note Table 1
shows the maximum parcel size of each use case.

File: Figure 6 shows the average time between when a
client sends a uniform resource identifier (URI) to share a
file and when the client receives a return signal from the
server, including the time for the server to read the file. As
the file size increases, the performance gap between LOCAL
and M+ increases due to file transfer costs. Given that the
performance of file sharing is bound by the network band-
width, it will continually improve as wireless technologies
evolve. Similar performance characteristics are observed for
anonymous shared memory (ASHMEM).

0

0.5

1

1.5

2

FASTEST GAME UI NORMAL

El
ap

se
d

 T
im

e
 (

s)

Sensor Rate

LOCAL M+

Figure 7: Performance of streaming accelerometer sensor
data. X axis shows the registration type declared in Android
Sensor Manager. M+ has sufficient throughput (maximum
of 90 Hz).

0

5

10

15

20

25

30

176 x 144 320 x 240 640 x 480 1024 x 768

Fr
am

e
ra

te
 (

FP
S)

Resolution (Pixels)

LOCAL M+

Figure 8: Performance of a real-time streaming camera pre-
view with a 24.9 Mbps wireless LAN connection between
the client and server. As the wireless network speeds up,
performance will improve without requiring changes to M+.

UDS: To evaluate the performance of M+ when using
UDS, we selected a sensor service that uses UDS internally
to transfer sensor data streaming. We measured the average
time it took for a client to obtain the first 10 sensor readings
since sensor callback is registered. We registered accelerom-
eter sensor callbacks at four different sensor rates, which are
pre-defined in Android Sensor Manager: FASTEST, GAME,
UI, and NORMAL. Each of them has a target sensor delay
of (0, 20, 60, and 200) ms, respectively. Figure 7 shows the
elapsed time according to the sensor rate. M+ was shown to
have comparable performance with the single-device case,
except when the sensor rate is FASTEST.

ION memory: We evaluated the performance of M+
when using ION memory. We wrote a camera micro-
benchmark that uses a real-time streaming camera preview.
In each experiment, we measured the average frame rate
(frames per second) that could be achieved during the first
1000 frames, excluding the first 50 frames to avoid the ef-
fect of camera initialization. Figure 8 shows M+ can achieve
acceptable performance (i.e., > 13 FPS) at low resolutions
(i.e., 176 × 144 and 320 × 240). At higher resolutions, how-
ever, M+ exhibited performance degradation. To maintain
15 FPS for the NTSC (i.e., 720 × 480) or higher resolution,
it requires at least 89 Mbps of network throughput to trans-
mit more than 760 KB of data per frame. We expect that
M+ will support 15 FPS for HD resolutions (i.e., 1280 × 720
and 1920 × 1080) by taking advantage of future wireless net-

340

0

1000

2000

3000

4000

5000

6000

Ladybug Real
racing 3

Vibration Camera
176x144

Camera
320x240

Camera
640x480

A
ve

ra
ge

 P
o

w
e

r
 (

m
W

) LOCAL M+_Client M+_Server

Figure 9: Average system power consumption of when sen-
sor, vibrator, and camera (for preview streaming) are used
remotely with M+ and LOCAL. Note that the numbers be-
low Camera represent resolution.

working standards. For example, 802.11ad can reach around
7 Gbps of throughput. In addition, M+ can be further ex-
tended to maintain acceptable FPS on high resolutions by
incorporating video encoding/compression techniques.

8.2.2 Power Consumption
We evaluated the power consumption of M+ compared to

a single-device case. For proper evaluation, we selected only
the I/O system services shown in Table 1. This is because
applications typically utilize such I/O system services con-
tinuously consuming a significant amount of energy while the
other use cases utilize functionalities only once in a while,
and incurring negligible additional power consumption. We
ran each experiment for one minute and measured the aver-
age power consumption of a mobile device using the Mon-
soon Power Monitor [8]4. During each experiment, we turned
on the display of all the devices and set the brightness to 50%
which consumed 819 mW on average.

Figure 9 compares the power consumption of different ap-
plications on three different devices: a single device with
stock Android, a client device with M+, and a server device
with M+. It is shown that M+ consumes 1.5× to 2× the
power consumption by the local device, depending on which
functionality to use. The first two applications, Ladybug
and Real racing 3, are 3D game applications that make use
of continuous sensor readings. Those clients perform heavy
computation (e.g., 3D image rendering) and consume a lit-
tle more energy with M+, mostly for additional cross-device
communication, while incurring much less power consump-
tion on servers. On the other hand, other client applica-
tions, such as Vibration and Camera, are shown to impose
even slightly more power consumption on servers than on
the local device. This is because some computation, such as
camera preview encoding, takes place on servers.

8.2.3 SSL Overheads
As explained in Section 7.2, M+ is able to establish a

secure SSL connection between client and server devices.

4We note that since Nexus 6 and its battery are integrated,
it is not trivial to use the Monsoon tool for measurement. We
thus measured the power as follows. We first disconnected
the battery by breaking the two pins corresponding to (+)
and (-) terminals on the circuit. We then soldered wires to
pads on the circuit that are connected to the (+) and (-)
terminals and connected the wires to the Monsoon.

Nougat 7.0 Marshmallow 6.0

KitKat 4.4 JellyBean 4.3

■ Same

■ Translatable

■ Incompatible

50%

13%

37%

54%

21%

25%

79%

10%

11%

73%

13%

14%

Figure 10: Compatibility study between Android Lollipop
5.0.1 and other latest Android versions. We compared the
RPC APIs used by the functionalities shown in Table 1.

Here, we evaluate the overheads of using the SSL connec-
tion in terms of performance and power consumption. Using
the SSL connections incurs overheads in encrypting and de-
crypting data to transfer. During our experiments, using SSL
connections degraded performance by 3.1%, 6.8%, 4.5%, and
51.7%, when using binder, file, sensor, and camera, respec-
tively. On average, the client uses 7.3% more energy and the
server consumes 5.9% more energy when using SSL connec-
tions, compared to the case of using M+ without SSL.

8.3 Compatibility Study
In this subsection, we discuss the compatibility of M+

with different versions of Android. Because M+ allows client
applications to utilize the functionalities of server processes
through cross-device RPC, the compatibility of M+ depends
solely upon that of RPC application programming interfaces
(APIs) between different Android versions. To explore such
compatibility, we conducted a comparison of the five latest
Android versions for the RPC APIs used by all the func-
tionalities shown in Table 1. Specifically, we investigated 173
RPC functions in 16 RPC interfaces, including IServiceM-

anager and IActivityManager, to study the compatibility
of Android Lollipop 5.0.1 with the four other latest versions.

Figure 10 shows the compatibility of the RPC APIs be-
tween different Android versions, reporting 50% to 79% of
identical RPC APIs. We used the diff tool to examine how
many RPC functions have exactly the same APIs between
different Android versions. The figure shows that more than
70% of the RPC functions examined have identical function
names and arguments between Lollipop and its closest ver-
sions (KitKat and Marshmallow), and the numbers drop to
50% when they are two versions away.

Figure 10 also shows that the compatibility increases by
10% to 21% with a trivial effort. We analyzed the RPC
functions of non-identical APIs to see whether they can be
translated in a trivial way. For example, we can use zero
or null for any additional arguments or combine multiple
arguments into a single argument without violating the se-
mantics. We translated such RPC arguments and verified

341

that they worked correctly between different Android ver-
sions; and then classified them as translatable. The figure
shows that Lollipop is easily compatible with other Android
versions with an average of 78.25% of the RPC APIs, when
including translatable ones. Some RPC APIs are inherently
incompatible, because some functionalities are available only
on newer or older Android versions or do not support back-
ward compatibility with older versions.

In addition, we ran each individual use case shown in Ta-
ble 1 while client and server devices ran on Lollipop and
Nougat, respectively. All use cases but three successfully
worked between different Android versions. The three did
not work when they utilized camera and notification ser-
vices through the RPC interfaces of ICameraServer, ICam-

eraDeviceUser, and INotificationManager. Nougat came
with a number of new camera RPC interfaces and signifi-
cant changes to notification RPC interfaces with new user
interface.

It is worth noting that the compatibility of application
functionality does not depend on the Android version. Ap-
plications are compatible without problems if they are all
up-to-date versions via the Google Store. Note that even a
client cannot use a server’s functionality on a single device
if the RPC interface between client and server is different.

9. RELATED WORK
Multi-device mobile platform: Support of mobile ap-

plications in multi-device environments has been receiving
increasing attention. One theme in the literature is seam-
less migration of execution of a single app between de-
vices. There have been several studies such as MAUI [19],
CloneCloud [18], Odessa [35], COMET [20], ColPhone [38]
and Lee et al. [28]. The focus of these papers is on auto-
matic execution partitioning and migration of applications
onto nearby smartphones and cloud servers to save energy
and improve performance. Recently, Flux [42] leverages app
migration to switch from a mobile device to another. Sap-
phire [43] provide a framework that supports distributed ex-
ecution of the same app on different mobile devices. How-
ever, all the aforementioned studies do not consider support-
ing an app running on one device to utilize functionalities
on another device.

Another recent theme is cross-device functionality shar-
ing. There are many pieces of work that support remote
I/O resource access for a specific class of I/O, such as re-
mote file systems [14, 27, 37], network USB [22, 23, 13, 21],
sensors [24, 40], and remote printers [4]. Rio [39] is the clos-
est work to ours, and allows sharing of various I/O resources
across devices by virtualization at device file layer with dis-
tributed shared memory. Compared to Rio, M+ provides a
platform-layer solution for cross-device functionality shar-
ing, with the following differences: (i) it supports a wider
range of functionalities for cross-device sharing, including
application functionality and Non-I/O system services, (ii)
it extends single device execution management logic to cross-
device, and (iii) it provides a cross-device permission check.

Android RPC: AndroidRMI [25] considers extending
Android binder IPC to support remote method invocation.
Yet, its solution requires modifying existing applications
by extending their Android interface definition language
(AIDL) interface description. Compared to AndroidRMI,
M+ handles reference types for RPC arguments and extends
execution management logic so that unmodified applications

can still use RPC interactions across different devices. Thus,
M+ supports a much wider range of applications. Nakao et
al. [33] proposes an extension to the intent class for remote
service invocation at the application layer in Android, while
supporting screen sharing only by using VNC remote screen
sharing middleware [3].

App-level I/O resource sharing: Many apps are avail-
able for sharing specific I/O resources, including IP We-
bcam [26] for camera, WiFi Speaker [32] for audio, and
MightyText [6] for SMS and MMS messages. Several apps
support screen sharing, such as Miracast [7], by allowing
streaming a screen from one device to another. VNC [15]
and Microsoft Remote Desktop Services [31] employ thin
client solutions instead of resource sharing. The above ap-
proaches develop cross-device sharing atop low-level APIs,
coming with high development cost. On the other hand, M+
provides a platform that reduces the burden of developing
applications for I/O resource sharing across multiple devices.
This extends app capabilities to provide novel user experi-
ence.

10. DISCUSSION
Device discovery: In this paper, devices are assumed

to know the addresses of others. We can leverage existing
techniques to relax this assumption. The DNS-SD [2] pro-
tocol uses multicast DNS [9, 10] that performs DNS queries
over IP multicast on a local area network with no conven-
tional DNS server installed. When there is no common local
WiFi network around, WiFi Direct [12] can be used to fa-
cilitate device discovery and data transmission. Using these
techniques, M+ can easily find out the address of the device
to which it wants to connect.

Mitigating compromised M+: In this work, we as-
sume that M+ is not compromised. If so, privacy-sensitive
data can be leaked to unauthorized parties. One may check
the integrity of M+ through remote attestation [34, 36] to
avoid interaction with compromised devices. This will be a
topic of future work.

Supporting ASHMEM reuse: We could not find any
case such that ASHMEM is reused while experimenting for
twenty-seven different applications (in Section 8.1). If there
are some applications that reuse ASHMEM under their cus-
tom synchronization protocols, the current prototype of M+
cannot handle them. However, if M+ uses a distributed
shared memory (DSM) technique as Rio [39] does, it is pos-
sible to support ASHMEM reuse in the future.

Non-standard way of cross-device interaction: The
design of M+ cannot support apps across devices if they in-
teract with each other through private channels rather than
using the standard binder IPC. For example, apps may com-
municate over a shared file (such as a common data file in
tmp directory). However, in our experience, such communi-
cation is not popular because it requires tight coupling be-
tween the apps which are typically developed independently.

Multiple seed parcels: As discussed in Section 8.1,
applications can share a single functionality with multiple
binder connections each of which is initiated by an individ-
ual seed parcel. In this paper, M+ assumes that users, when
prompted, will determine the right destination in the pres-
ence of multiple instances of the same application across
several devices. There are two possible solutions. M+ will
be able to address such a case correctly without relying on
users, if (i) application developers provide information about

342

the dependency between seed parcels, or (ii) applications dis-
tinguish different app instances individually by device IDs
and package names.

Applying M+ to other mobile platforms: Although
M+ is specialized for Android, the general design of M+
is applicable to other mobile platforms. M+ was designed
under the key assumption that applications utilize the func-
tionalities of other processes through RPC over well-defined
IPC mechanisms. This assumption is a common mobile plat-
form design paradigm (e.g., XPC and Mach messages in
iOS [29]). Supporting transparent cross-device functionality
sharing over such mobile platforms will face the following
three challenges; it must i) extend execution management
logic, ii) handle multiple instances of the same application,
iii) extend the single-device IPC mechanism to cross-device.
For the first challenge, the design of M+ will be typically ap-
plicable in managing execution context and semantics across
multiple devices. For the second, the concept of remote
app registration will be helpful to manage multiple app in-
stances. For the third, M+ employs a functionality-agnostic
approach leveraging the following three binder characteris-
tics. Binding is made through a proxy and a stub, new binder
connections are generated through seed parcels, and there
are some standard reference types for RPC arguments. If
such characteristics are not provided, engineering effort can
be made to address the challenge in a functionality-aware
manner.

11. CONCLUSION
We presented M+, an extension of Android that sup-

ports a range of cross-device functionality sharing. With
M+, unmodified applications can utilize application and sys-
tem functionalities across devices, when they use RPC based
on the binder IPC mechanism. M+ also provides secure con-
nection and performs cross-device permission check for both
local and remote applications in the same way. In addition,
M+ distinguishes multiple instances of applications, which
has not been considered in existing mobile platforms. Our
experiment with the M+ prototype demonstrated that it
achieves performance close to local unless data transfer is
large. We expect the cross-device sharing (M+) platform to
accelerate development of creative and useful applications
to provide novel user experience.

Acknowledgements
This work was supported in part by BSRP (NRF-
2015R1D1A1A01058713), IITP (B0101-15-0557), and
NRF(2015M3A9A7067220) funded by the Korea Gov-
ernment (MEST/MSIP/MOTIE). We also thank our
anonymous reviewers for their insightful and constructive
comments that helped us improve this paper.

12. REFERENCES
[1] A number of connected devices in 2016.

https://www.globalwebindex.net/blog/
digital-consumers-own-3.64-connected-devices.

[2] DNS-Based Service Discovery.
https://tools.ietf.org/html/rfc6763.

[3] Droid VNC Server.
https://github.com/oNaiPs/droidVncServer.

[4] Epson Remote Print. http://goo.gl/f7EdUh.

[5] Forward Secrecy.
https://en.wikipedia.org/wiki/Forward secrecy.

[6] MightyText: SMS Text Messaging.
https://goo.gl/oLXH0T.

[7] Miracast.
http://www.wi-fi.org/wi-fi-certified-miracast.

[8] Monsoon power monitor. https:
//www.msoon.com/LabEquipment/PowerMonitor/.

[9] Multicast DNS. http://www.ietf.org/rfc/rfc6762.txt.

[10] NsdManager. http://developer.android.com/reference/
android/net/nsd/NsdManager.html.

[11] The transport layer security (tls) protocol version 1.2.
https://tools.ietf.org/html/rfc5246.

[12] Wi-Fi Direct.
http://www.wi-fi.org/discover-wi-fi/wi-fi-direct.

[13] Wireless USB. http://www.usb.org/developers/wusb/.

[14] Network file system (nfs) version 4 protocol. IFTF
Network Working Group RFC Draft, 2003.

[15] T. R. andQ. Stafford-Fraser, K. R. Wood, and
A. Hopper. Virtual network computing. IEEE Internet
Computing, 1998.

[16] D. Bruschi, L. Cavallaro, A. Lanzi, and M. Monga.
Replay attack in tcg specification and solution. In 21st
Annual Computer Security Applications Conference
(ACSAC’05), pages 11–pp. IEEE, 2005.

[17] F. Callegati, W. Cerroni, and M. Ramilli.
Man-in-the-middle attack to the https protocol. IEEE
Security and Privacy, 7(1):78–81, 2009.

[18] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
CloneCloud: Elastic Execution between Mobile Device
and Cloud. In Proc. ACM EuroSys, 2011.

[19] E. Cuervo and A. Balasubramanian. MAUI: Making
Smartphones Last Longer with Code Offload. In Proc.
ACM MobiSys, 2010.

[20] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao,
and X. Chen. COMET: Code Offload by Migrating
Execution Transparently. In Proc. USENIX OSDI,
2012.

[21] A. Hari, M. Jaitly, Y. Chang, and A. Francini. The
Swiss Army Smartphone: Cloud-Based Delivery of
USB Services. In Proc. ACM MobiHeld, 2011.

[22] D. International. AnywhereUSB.
http://www.digi.com/products/usb/anywhereusb.jsp.

[23] D. International. USB Over IP.
http://usbip.sourceforge.net/.

[24] Y.-W. Jong, P.-C. Hsiu, S.-W. Cheng, and T.-W. Kuo.
A semantics-aware design for mounting remote sensors
on mobile systems. In Proceedings of the 53rd Annual
Design Automation Conference, page 140. ACM, 2016.

[25] H. Kang, K. Jeong, K. Lee, S. Park, and Y. Kim.
Android RMI: A User-Level Remote Method
Invocation Mechanism between Android Devices. The
Journal of Supercomputing, 2015.

[26] P. Khlebovich. IP Webcam. https://goo.gl/FQgQst.

[27] P. J. Leach and D. Naik. A common internet file
system (cifs/1.0) protocol. IFTF Network Working
Group RFC Draft, 1997.

[28] G. Lee, H. Park, S. Heo, K.-A. Chang, H. Lee, and
H. Kim. Architecture-aware automatic computation
offload for native applications. In Proceedings of the

343

https://www.globalwebindex.net/blog/digital-consumers-own-3.64-connected-devices
https://www.globalwebindex.net/blog/digital-consumers-own-3.64-connected-devices
https://tools.ietf.org/html/rfc6763
https://github.com/oNaiPs/droidVncServer
http://goo.gl/f7EdUh
https://en.wikipedia.org/wiki/Forward_secrecy
https://goo.gl/oLXH0T
http://www.wi-fi.org/wi-fi-certified-miracast
https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/
http://www.ietf.org/rfc/rfc6762.txt
http://developer.android.com/reference/android/net/nsd/NsdManager.html
http://developer.android.com/reference/android/net/nsd/NsdManager.html
https://tools.ietf.org/html/rfc5246
http://www.wi-fi.org/discover-wi-fi/wi-fi-direct
http://www.usb.org/developers/wusb/
http://www.digi.com/products/usb/anywhereusb.jsp
http://usbip.sourceforge.net/
https://goo.gl/FQgQst

48th International Symposium on Microarchitecture,
pages 521–532. ACM, 2015.

[29] J. Levin. Mac OS X and iOS Internals: To the Apple’s
Core. Wrox, 2012.

[30] A. J. Menezes, P. C. van Oorschot, and S. A.
Vanstone. Handbook of Applied Cryptography. CRC
Press, 2001.

[31] Microsoft. Remote Desktop Services. https://technet.
microsoft.com/en-us/windowsserver/ee236407.aspx.

[32] W. Morrison. WiFi Speaker. https://goo.gl/N128Ar.

[33] K. Nakao and Y. Nakamoto. Toward Remote Service
Invocation in Android. In Proc. Ubiquitous Intelligence
& Computing/Autonomic & Trusted Computing, 2012.

[34] M. Nauman, S. Khan, X. Zhang, and J.-P. Seifert.
Beyond kernel-level integrity measurement: enabling
remote attestation for the android platform. In
Proceedings of International Conference on Trust and
Trustworthy Computing, 2010.

[35] M. Ra, A. Sheth, L. Mummert, P. Pillai, d. Wetherall,
and R. Govidan. Odessa: Enabling Interactive
Perception Applications on Mobile Devices. In Proc.
ACM MobiSys, 2011.

[36] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox,
P. England, C. Fenner, K. Kinshumann, J. Loeser,
D. Mattoon, et al. fTPM: A firmware-based tpm 2.0
implementation. Microsoft Research Technical Report
(MSR-TR-2015-84), 2015.

[37] A. P. Rifkin, M. P. Forbes, R. L. Hamilton, M. Sabrio,
S. Shah, and K. Yueh. RFS Architectural Overview.
In Proc. USENIX Conference, 1986.

[38] A. Salem and T. Nadeem. ColPhone: a smartphone is
just a piece of the puzzle. In Proc. ACM MobiCom,
2014.

[39] A. A. Sani, K. Boos, M. H. Yun, and L. Zhong. Rio: A
System Solution for Sharing I/O between Mobile
Systems. In Proc. ACM MobiSys, 2014.

[40] C. Shen, R. P. Singh, A. Phanishayee, A. Kansal, and
R. Mahajan. Beam: Ending monolithic applications
for connected devices. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16). USENIX
Association, 2016.

[41] I. Standards. IEEE 802.11i-2004: Amendment 6:
Medium Access Control (MAC) Security
Enhancements. 2003.

[42] A. Van’t Hof, H. Jamjoom, J. Nieh, and D. Williams.
Flux: Multi-surface computing in android. In
Proceedings of the Tenth European Conference on
Computer Systems, page 24. ACM, 2015.

[43] I. Zhang, A. Szekeres, D. V. Aken, I. Ackerman, S. D.
Gribble, A. Krishnamurthy, and H. M. Levy.
Customizable and Extensible Deployment for
Mobile/Cloud Applications. In Proc. USENIX OSDI,
2014.

344

https://technet.microsoft.com/en-us/windowsserver/ee236407.aspx
https://technet.microsoft.com/en-us/windowsserver/ee236407.aspx
https://goo.gl/N128Ar

	Introduction
	Use Cases
	Android Background
	System design overview
	Cross-device IPC Connection
	Binder Parcel Interception
	Cross-device Binder IPC

	Cross-device RPC Support
	RPC Argument Handling
	Remote App Registration
	Cross-device Execution Management

	Enhancing Cross-device Security
	Cross-device Permission Check
	Network Security

	Evaluation
	Functionality Coverage
	Performance and Power Consumption
	Performance
	Power Consumption
	SSL Overheads

	Compatibility Study

	Related work
	Discussion
	Conclusion
	References

