
Cross-Platform Support for Rapid Development of Mobile
Acoustic Sensing Applications

Yu-Chih Tung
The University of Michigan

yctung@umich.edu

Duc Bui
The University of Michigan

ducbui@umich.edu

Kang G. Shin
The University of Michigan

kgshin@umich.edu

ABSTRACT
LibAS is a cross-platform framework to facilitate the rapid develop-
ment of mobile acoustic sensing apps. It helps developers quickly
realize their ideas by using a high-level Matlab script, and test them
on various OS platforms, such as Android, iOS, Tizen, and Lin-
ux/Win. LibAS simplifies the development of acoustic sensing apps
by hiding the platform-dependent details. For example, developers
need not learn Objective-C/SWIFT or the audio buffer management
in the CoreAudio framework when they want to implement acous-
tic sensing algorithms on an iPhone. Instead, developers only need
to decide on the sensing signals and the callback function to han-
dle each repetition of sensing signals. We have implemented apps
covering three major acoustic sensing categories to demonstrate
the benefits and simplicity of developing apps with LibAS. Our
evaluation results show the adaptability of LibAS in supporting
various acoustic sensing apps and tuning/improving their perfor-
mance efficiently. Developers have reported that LibAS saves them
a significant amount of time/effort and can reduce up to 90% lines
of code in their acoustic sensing apps.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Software and its engineering →
Application specific development environments;

KEYWORDS
Acoustic sensing, cross-platform development, rapid prototype
ACM Reference Format:
Yu-Chih Tung, Duc Bui, and Kang G. Shin. 2018. Cross-Platform Support for
Rapid Development of Mobile Acoustic Sensing Applications. In MobiSys
’18: The 16th Annual International Conference on Mobile Systems, Applications,
and Services, June 10–15, 2018, Munich, Germany. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3210240.3210312

1 INTRODUCTION
Over the past decade, acoustic sensing has drawn significant at-
tention thanks to its ubiquitous sensing capability. For example,
it can be easily installed on numerous existing platforms, such
as laptops, smartphones, wearables, or even IoT devices, because

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys ’18, June 10–15, 2018, Munich, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5720-3/18/06. . . $15.00
https://doi.org/10.1145/3210240.3210312

Sensing
Result:
Object is
4m away

Developer's responsibility without LibSS

Developer's only responsibility with LibAS

sensed signals

FFT
Design processing callback

Sensing devices
(Android/iOS/Tizen...)

Essential sensing
algortihms

Platform control
components

Hardware control
Audio buffer control
Play/record sync
Preprocessing
Data streaming
Multi-threading
Mic auto-tuning
Disable AGC
...
Implement above
on multiple platforms

Android/iOS/Tizen
Windows/Linux ...

iOS

Linux Tizen
Design sensing signals LibAS

Figure 1: Concept of LibAS. LibAS reduces the cross-platform
development effort for acoustic sensing apps by hiding laborious
platform-dependent programming details.

most of them are already equipped with microphones and speak-
ers. Acoustic sensing is also versatile; it can provide context-aware
computations [12, 26, 32, 33, 38, 44, 49], extend human–computer
interfaces [14, 20, 21, 28, 37, 50, 52], and create nearly zero-cost
inter-device interactions [11, 19, 30, 35, 47, 56, 57]. Even though
these applications are designed to be ubiquitous, most of them are
implemented only on a single platform like Android or iOS, and
tested with just one or two types of devices.

Different platforms/devices, in general, have significantly differ-
ent sensing capabilities due to their varying hardware and operating
systems (OSes). As a result, cross-platform implementation and de-
ployment of acoustic sensing apps require a significant amount of
time/effort.

We introduce below the three major challenges in building such
cross-platform support.

Fragmented programming language support. Porting the
same signal processing algorithms and applications to different
programming languages and platforms, such as JavaScript on An-
droid and Objective-C/SWIFT on iOS, are difficult, time-consuming,
and error-prone [16]. Moreover, any modification of the algorithms
causes changes of code on multiple platforms, entailing significant
development and maintenance efforts/costs.

Platform settings. Since each platform requires specific set-
tings, developers must have detailed knowledge to set different
platforms correctly. For example, adding a recorder flag in Android
(AudioSource.VOICE_RECOGNITION) might change the acoustic
sensing behavior significantly by disabling the automatic gain con-
trol (AGC). A similar tweak exists in iOS’s AVAudioSession. These
settings can be easily overlooked by the developers unfamiliar with
platform SDK.

Device hardware tuning. Since real-time acoustic sensing has
stringent timing and signal requirements, it is essential to tune

455

https://doi.org/10.1145/3210240.3210312
https://doi.org/10.1145/3210240.3210312

MobiSys ’18, June 10–15, 2018, Munich, Germany Yu-Chih Tung, Duc Bui, and Kang G. Shin

Sonar-like sensing Inter-device interactions Sound fingerprinting
System Testbed System Testbed System Testbed

FingerIO[37] Galaxy S4 & wearables PseudoRanging[30] Special mic and amp Acoustruments[28] iPhone 5c
SoundWave[20] MAC Air & 3 laptops DopEnc[56] 6 Android devices Symbolic Location[26] Nokia 5500 Sport
ApneaApp[36] 4 Android devices SwordFight[57] Nexus One & Focus Touch & Activate[39] Arduino
vTrack[14] Galaxy Note4 & S2 BeepBeep[40] HP iPAQ & Dopod 838 EchoTag[49] 4 Android & 1 iPhone

AudioGest[45] Galaxy S4/Tab & Mac Spartacus[47] Galaxy Nexus RoomSense[44] Galaxy S2
LLAP[54] Galaxy S5 AAMouse[55] Google Nexus 4 & Dell laptop CondioSense[32] 4 Android devices

BumpAlert[51] 6 Android devices Dhwani[35] Galaxy S2 & Hp mini SweepSense[29] Mac & earbuds
Table 1: Acoustic sensing apps.Most ubiquitous acoustic sensing apps are only implemented and tested on few devices and platforms.
We categorize these apps into three types and will demonstrate how to build sensing apps of each type with LibAS.

the algorithms to different device hardware. For example, some
microphones might even receive 20dB less signal strength at 22kHz
than others [30]. It is also worth noting that, due to the varying
installation location of the microphone/speaker on a device, a fixed-
volume sound might saturate the microphone on certain devices
while it might be too weak to be picked up on other devices.

We propose LibAcousticSensing (LibAS)1 to meet these chal-
lenges by facilitating the rapid development/deployment of acoustic
sensing apps on different platforms. LibAS is designed based on our
study of more than 20 existing acoustic sensing apps. In particular,
large amounts of time and effort have been spent repeatedly to
address the common platform issues that are often irrelevant to
each app’s sensing. For example, several researchers [31, 40, 49, 57]
mentioned the problem caused by non-real-time OS delay and then
solved the problem by syncing the played/recorded sound through
their own ad-hoc solutions. These repeated efforts can be avoided
or significantly reduced by providing a proper abstraction that
handles the common platform issues systematically.

Fig. 1 shows the concept of LibAS which divides a normal acous-
tic sensing app into two parts: (1) essential sensing algorithms and
(2) platform control components. This separation is based on an ob-
servation that the design of sent signals (e.g., tones, chirps, or phase-
modulated sounds) and the analysis of received signals (e.g., doppler
detection, fingerprinting, or demodulation) are usually aligned
with the specific app’s goal. Besides these two app-dependent com-
ponents, handling audio ring buffers and audio multiplexing are
mostly duplicated across apps and are closely related to the specific
platform. Given such characteristics of acoustic sensing apps, sepa-
rating the essential sensing algorithms from the other components
can provide a cross-platform abstraction that hides the platform-
dependent details from the app developers. To date, LibAS’s plat-
form control API has been implemented to support 5 platforms:
iOS, Android, Tizen, and Linux/Windows.

With LibAS, app developers are only required to choose signals
to sense and then build a callback function for handling each repeti-
tion of the sensing signals being received. The developers can either
build the callback function by using LibAS’s server-client remote
mode with Matlab, or choose the standalone mode with C (both
support cross-platform dvelopment). The former provides rapid
prototyping environments (the received signals can be monitored
and visualized via the built-in utility functions and GUI), while the
latter provides a fast computation interface and can be shipped in a
1LibAS Github: https://github.com/yctung/LibAcousticSensing

standalone app. We expect developers to first use the remote mode
to design and validate their sensing algorithms, and then transform
their algorithms to the standalone mode, when necessary. Building
acoustic sensing apps in this remote-first-then-standalone way not
only reduces the development effort (compared to programming di-
rectly in the platform languages without any visualization support)
but also makes the essential components platform-agnostic. This is
akin to several well-known cross-platform UI libraries [2, 7, 8], but
we are the first to apply it to acoustic sensing apps.

Our evaluation results show that LibAS significantly reduces the
cross-platform development effort of acoustic sensing apps. Specifi-
cally, LibAS has been used to build three demonstrative acoustic
sensing apps. These apps cover the three major categories of acous-
tic sensing, i.e., sonar-like sensing, inter-device interaction, and
sound fingerprinting. Our implementations show LibAS’s adapt-
ability to meet all the unique requirements of these categories, such
as real-time response, capability of controlling multiple devices, and
connecting to a third-party machine learning library. With LibAS,
app implementations require only about 100 lines of code to build
(excluding the code for user interface). LibAS reduces up to 90% of
the lines of code in the projects for which we acquired the source
code. Three developers who used LibAS to build projects reported
significant reductions of their development time, especially in case
of building the first prototype, e.g., from weeks to a few days. As
reported by these developers, LibAS’s utility functions ease the
cross-platform/device tuning by visualizing several critical sensing
metrics in real time. Only minimal overheads are incurred by LibAS,
e.g., 30ms and 5ms latencies in the remote mode and standalone
mode, respectively.

This paper makes the following four contributions:
• Design of the first library to ease the cross-platform devel-
opment of acoustic sensing apps [Section 3];

• Implementation of three existing apps from different cate-
gories using LibAS [Section 4 / Section 5];

• Evaluation of the overhead of LibAS and its capability to han-
dle the effects of heterogeneous hardware/platform support
[Section 6]; and

• User study of three developers who used LibAS in their real-
world projects [Section 7].

2 RELATEDWORK
Table 1 summarizes the existing acoustic sensing apps. Acoustic
sensing is expected to become ubiquitous as it can be integrated into

456

Cross-Platform Support for Rapid Development of Acoustic Sensing Applications MobiSys ’18, June 10–15, 2018, Munich, Germany

audio settings

settings/results

settings settings

server:10.0.0.1:555

Sensing Result:
Object 5m away!

Mode: remote

Connect

jni:Callback.cpp

Sensing Result:
Object 5m away!

Mode:standaline

Start

Remote
10.0.0.1

2

4.2 m

0.5

Standalone Mode
results

imported
(based on platorms)

Tizen
LibAS.h/.c

Linux/Win
LibAS.jar

iOS
LibAS.framework

Android
LibAS.aar

Android [.aar] iOS [.framework] Linux/Win [.jar] Tizen [.h/.c]

Callback.cpp

Assets/setting.json
Assets/signal.dat ...

SensingServer.m Callback.m

Main.m

NetworkController

AcousticSensingController

StandaloneController

AudioController

Callback.m/cpp

Developer's app codes Swaptable platofrm codes, ex:

Genearl sensing codes Universal interface & wrapper

MEXWrapper.m

record setting
/audio source

recorded data

recorded data

recorded data

server setting

sensing results

recorded data

record setting
/audio source

(load)

(create)

(export)

(test)

recorded data

recorded data

recorded data

sensing results

sensing results

sensing results

sensing results

sensing results

sensing results

device setting
/server ip/port

device setting
/jni setting sensing results

Remote Server

Sensing Device

(play/record)

(play/record)

(create)

(export) (load)

audio

audio

(generate / test)

results

settings

results

settings/results audio

audio
settings

audio

results

audio

MEX

MEX

JNI/C

Files

Socket

universal interface & wrapper

Remote Mode

App UI Platform Control API Remote Matlab API Developer Code

Dev

DevApp
3:12

Mode:
Server:

UserData:

Result:

Connect

Send

Code: Val:

Figure 2: System overview. LibAS provides a universal interface/wrapper to communicate with the callback components. Thus, the
platform control API can be easily imported to support different devices/platforms while keeping the developer’s essential sensing algorithm
consistent.

existing computational platforms, such as laptops, mobile phones,
wearables, and IoT devices. Sensing via acoustic signals can be either
passive or active. Passive acoustic sensing only utilizes the device
microphone to record the environmental sounds, user speeches, or
the sound of nearby events to provide context-aware computations
[12, 21, 22, 33, 44, 48, 52]. On the other hand, active acoustic sens-
ing uses both the speaker and the microphone to send a specially-
designed sound and then monitor/evaluate how this sound is re-
ceived/modified by the targeting events. Active acoustic sensing can
provide virtual touch interfaces [14, 28, 39, 55], determine the rela-
tive movements between devices [30, 40, 47, 56, 57], remember the
tagged locations [26, 44, 49], or recognize the users’ status or their
interactions with devices [20, 36, 37, 50]. LibAS is designed mainly
for active acoustic sensing but it can also be used for passive acous-
tic sensing. Although acoustic sensing apps are usually claimed to
be ubiquitous, most of them are actually implemented and tested
only on one or two types of devices (as shown in Table 1). This
lack of cross-platform support hampers the deployment of acoustic
sensing apps. LibAS is designed to solve this problem by provid-
ing a high-level abstraction that hides device/platform-dependent
development details from the acoustic sensing algorithms.

LibAS also provides utility functions to help tune the perfor-
mance of acoustic sensing on devices. Existing studies reported
several tuning issues caused by high speaker/microphone gain
variations [30], lack of device microphone controls [52], speaker
ringing effects [35], significant physical separation of microphones
from speakers [50], random speaker jitters [57], and adaptation of
microphone automatic gain control (AGC) [49]. These issues have
usually been addressed in an ad-hoc way by each developer, and
there are few systematic ways to analyze them. LibAS provides an
easily accessible GUI to select microphones/speakers available to
sense, determine if the AGC can be disabled, and then determine
the gains of signals received between different pairs of microphones
and speakers. We also plan to add a crowdsourcing feature that
helps collect these types of device information when developers
are testing them with LibAS, so that future developers will have a
better insight before actually building their own acoustic apps.

There already exist several libraries/frameworks targeting the
acoustic sensing apps, but all of them have very different goals from
LibAS. For example, Dsp.Ear [18] is a system-wide support to accel-
erate the acoustic sensing computation by utilizing phone’s GPU
while DeepEar [27] is a library for constructing a convolution neu-
ral network (CNN) based on acoustic sensing signals. Auditeur [38]
and SoundSense [33] focus on providing a scalable/cloud-based
service to collect acoustic features. CAreDroid [15] is an Android-
only framework to provide an efficient sensing (including acoustic
signals) interface for context-aware computations. In terms of pro-
viding a cross-platform abstraction for smartphone sensors, the
closest to LibAS is Code In The Air (CITA) [23, 42]. However, CITA
focuses on tasking apps, such as sending a message to users’ wives
when they leave office, and provides limited real-time support for
active acoustic sensing. Note that most of these libraries/frame-
works are also parallel to LibAS, so can be integrated in LibAS, if
necessary. In terms of the cross-platform development, LibAS is
more closely related to the well-known PhoneGap [7], ReactNa-
tive [8], and Cocoa2d-x [2] frameworks where developers can build
cross-platform mobile app/game UI by JavaScript or C++.

3 SYSTEM DESIGN
Fig. 2 provides an overview of LibAS. As shown in this figure,
among the four components of an app developed by LibAS, only
the leftmost component includes the developer’s code that realizes
the essential sensing algorithm of apps. The platform control API
is the only platform-dependent component which needs to be im-
ported based on the target platforms (e.g., LibAS.aar for Android or
LibAS.framework for iOS). The main interface of LibAS exposed to
developers is the class called AcousticSensingController which
can be initialized to either a “remote mode” or a “standalone mode”.
In what follows, we will describe how to use LibAS in these two
modes, how LibAS can be cross-platform supported, and the devel-
opment flow of using LibAS.

457

MobiSys ’18, June 10–15, 2018, Munich, Germany Yu-Chih Tung, Duc Bui, and Kang G. Shin

3.1 Design Challenges
Developing acoustic sensing apps across different platforms is in-
herently challenging because of the fragmented programming lan-
guage, as we mentioned in Section 1. Designing a framework like
LibAS to facilitate such a cross-platform development requires even
more challenges to overcome. First, we need a programming ab-
straction to provide the cross-platform support. It is difficult to
decide on a proper abstraction due to the trade-off between de-
velopment overhead and programmability. For example, an ex-
treme design choice may implement all existing acoustic sens-
ing apps as black boxes across different platforms, and app de-
velopers can then utilize these black boxes in a way similar to
AcousticSensing.onTowDevicesNearby(range, callback). This
way, developers may minimize the development overhead but lose
the flexibility of developing new acoustic sensing algorithms (be-
cause of “inflexible” black boxes) and improving the sensing per-
formance (which usually requires additional signal processing).
LibAS’s abstractions are designed on the basis of our experience
with, and study of more than 20 existing acoustic sensing apps. Our
current design, as shown in Fig. 2, allows developers to preserve the
programmability for customizing sensing signals and processing
the responses while hiding tedious platform details.

Second, since acoustic sensing needs extensive tuning, develop-
ers usually need to iteratively modify their algorithms based on
the observed performance. It is thus critical to visualize acoustic
responses and then adjust the sensing algorithms accordingly. To
achieve this, LibAS provides not only the standalone mode, which
supports sensing algorithms written in C to be executed on different
platforms, but also a Matlab remote mode that allows developers
to prototype the system using a high-level script language.

Finally, while LibAS is designed for many existing acoustic sens-
ing apps, our current design may still miss critical information/-
functions which will be needed in future acoustic sensing apps. So,
it is important to make LibAS extensible to meet developers’ special
needs. Currently, LibAS has an extensible user interface that allows
developers to communicate additional data between their sensing
algorithms and devices. For example, one of the app developers —
who are using LibAS— utilized this interface to send accelerometer
data for improving the acoustic sensing accuracy. The usage of this
interface will be elaborated in Section 5

3.2 Remote Mode
In the remote mode, the phone/watch becomes a slave sensing
device controlled by a remote Matlab script called Main.m. This
Matlab script creates a LibAS sensing server which will send the
sensing sounds to devices, sync the developer’s sensing configu-
rations, and use the assigned callback function, Callback.m, to
handle the recorded signals. The recorded signals will first be pre-
processed by LibAS, truncated into small pieces (i.e., the segment
of each sensing signal repetition), and each segment will be sent to
the callback function. The callback function is responsible for calcu-
lating the sensing result based on the app’s purpose. A conceptual
callback function of a sonar-like sensing app can be:

dists = peak_detect(matched_filter(received_signal))

Note the sensing results, e.g., dists in this example, will be auto-
matically streamed back to the device for providing a phone/watch
UI update (e.g., dumping the result as texts) in real time. A complete
code example of using LibAS to implement real apps is provided in
the next section.

Our remote mode design aims to help developers focus on build-
ing the essential sensing algorithm in a comfortable programming
environment, i.e., Matlab. Note that our current Matlab implemen-
tation is only a design choice; it is possible to build the same func-
tionality in other languages (e.g., Python). We choose to implement
the remote mode with Matlab because it provides several useful
built-in signal processing and visualization tools. Many existing
acoustic sensing projects also use Matlab to process/validate their
acoustic algorithms [12, 12, 26, 31, 34, 36, 47, 49–51, 55].

3.3 Standalone Mode
In contrast to the remote mode, the standalone mode allows sens-
ing apps to be executed without connecting to a remote server. To
achieve this, the developers are required to export their sensing con-
figurations in the Main.m to binary/json files (with a single LibAS
function call) and then transform the Callback.m function to C. In
our current setting, this Matlab-to-C transformation can be either
done manually by the developers or automatically completed by
the Matlab Coder API [6, 9]. The transformation should be straight-
forward since LibAS’s abstraction lets the callback only focus on
“how to output a value based on each repetition of the received sensing
signals”. The C-based callback has the same function signature as
our Matlab remote callback so it can be easily connected to the same
LibAS platform control API. Specifically, when developers already
have a workable sensing app with the remote mode, the standalone
can be enabled by passing the C-based callback function as an initial-
ization parameter to AcousticSensingController. The app will
then seamlessly become a standalone app while all other functions
work the same as in the remote mode.

Note that the standalone mode not only can execute the app with-
out network access but also usually provide a better performance,
such as a shorter response latency. However, it is challenging to de-
velop/debug the sensing callback directly in the low-level language
like C due to the lack of proper signal processing and visualiza-
tion support. For example, if the developers incorrectly implement
the previously-mentioned matched filter with wrong parameters,
the detections might seem correct (still able to detect something)
while the detection performance is severely degraded. To solve this
problem, we provide a MexWrapper2 that can easily connect/test
the C callback even in the remote mode (i.e., the recorded audio
will be streamed remotely to the Matlab server but the received
signal will be processed by the C-based callback, as shown in Fig. 2).
This “hybrid” mode helps visualize and debug the C callback. For
example, the matched filter with wrong parameters can be easily
identified by plotting the detected peak profiles in Matlab.

3.4 Expected Development Flow
Fig. 3 shows a typical development flow of using LibAS. New devel-
opers may first install our remote Matlab package and the pre-built

2MEX [1] is an interface to call native C functions in Matlab

458

Cross-Platform Support for Rapid Development of Acoustic Sensing Applications MobiSys ’18, June 10–15, 2018, Munich, Germany

(a) Preparation (b) Tuning (c) Finalization

Install LibAS
DevApp

Connect DevApp
to Remote Mode

Design sensing
signals & callbacks

(Optional)
Standalone Mode

Link App UI to
LibAS's Interface

Include LibAS
as a library Start sensing

& testing

Tune parameters
& algorithms

Figure 3: Expected development flow. Developers can first use
the published LibAS DevApp (cross-platform supported) to realize
their idea without even installing platform development kits, like
XCode or AndroidStudio.

DevApp (like an example developing app). This DevApp helps de-
velopers connect phones/watches to their sensing servers, with a
simple UI as shown in Fig. 2, thus eliminating the need to install and
learn platform development kits at this stage. After deciding which
signals to use and how to process them in the callback function,
the developers can start testing their sensing algorithms on real
devices from different platforms and then modify the algorithm to
meet their goals.

Developers can, in the end, choose to install a platform devel-
opment kit for building the UI that they like to have and import
LibAS as a library for their own apps. Note that the same sens-
ing algorithm implemented in Matlab can be used for both ways,
i.e., executing DevApp directly or including LibAS as an external
library. Most of our current developers choose our remote mode
to build their demo apps thanks to the simplicity and the strong
visualization support in Matlab.

Once developers have validated their algorithms in the remote
mode, they can (optionally) finalize the app to the standalone mode.
As described earlier, developers can finish this transformation easily
with the Matlab Coder API [6, 9], test with our Matlab MEXWrapper,
and then ask the app to connect to the standalone callback function.
Whenever developers notice a problem with their designed sensing
algorithms, they can easily switch back to the remote Matlab mode
for ease of the subsequent development.

3.5 Cross-platform Support
Some astute readers might have already noticed that LibAS can pro-
vide the cross-platform support because our platform control API
connects to developers’ sensing algorithms via several universal
interfaces/wrappers (marked by the double tilde symbols in Fig. 2).
For example, in the remote mode, different devices/platforms talk to
the remote server via a standard socket. In the standalone mode, de-
vices can understand the C-based callback either directly (like iOS
and Tizen) or through native interfaces, like JNI/NDK (Android and
Java). In summary, nearly all mobile platforms can understand/in-
terface C and standard sockets, thus enabling LibAS to support the
development of cross-platform acoustic sensing apps.

We are not the first to support cross-platform frameworks with
this concept. For example, a well-known game library, Cocos2d-
x [2], also helps build cross-platform games in C. Our remote mode
model is also similar to several popular cross-platform UI frame-
works like PhoneGap [7] and ReactNative [8] that load app UI/-
content from a remote/local JavaScript server. However, we are

the first to apply this concept to acoustic sensing apps. With its
cross-platform support, LibAS enables acoustic sensing apps to be
ported to various existing and emerging devices.

4 IMPLEMENTATION
LibAS implements the platform control API in Java, Objective-C,
and C separately, and exports them as external libraries on different
platforms, such as .aar for Android, .framework for iOS, .jar for
Linux/Windows, and .h/.c for Tizen. These implementations follow
a unified protocol to play/record acoustic signals and talk to the
remote Matlab sensing server. Implementing this framework to
offload the sensed data to a Matlab, process it, and then return the
result to the device is not trivial for the following two reasons.

First, it requires the domain knowledge of controlling audio and
network interfaces on different platforms. For example, Android
SDK can support recording and playing audio signals simultane-
ously by just writing or reading bytes from AudioRecord and to
AudioTrack classes in separate threads. However, iOS requires de-
velopers to know how to allocate and handle low-level audio ring
buffers in the CoreAudio framework to record audio in real time
(i.e., fetching the audio buffer for real-time processing whenever
it is available rather than getting the entire buffer only when the
recording ends). Tizen needs its native programming interface of
audio-in/out classes to record and play audios based on a callback.
Also, different platforms usually need their own ways to control
which microphone/speaker to use and how to send/record the sig-
nal properly. These development overheads can be the roadblock
to the realization of existing acoustic sensing apps on different
platforms.

Second, building a Matlab server to control the sensing devices
via sockets is not trivial. Even though Matlab has already been
used to process and visualize acoustic signals in many projects
[12, 26, 47, 49, 50, 55], the lack of well-established socket support
makes it challenging to realize our remote mode, especially when
multiple devices are connected. For example, during the develop-
ment of LibAS, we discovered and reported two issueswithMatlab’s
socket library regarding randomly dropped packets and UI thread
blocking. Similar issues are also noticed by our current users. As
a result, they chose to either export the audio signals as files or
processing signals directly in Java before using LibAS. To address
these issues that might have been caused by Matlab’s single-thread
nature, LibAS builds its own external Java socket interface. This
Java socket interface is then imported to Matlab to support read-
ing/writing multiple sockets simultaneously in separate threads.
The performance of our current design is shown in Section 6.

5 DEMONSTRATIVE APPLICATIONS
We have implemented three different types of acoustic sensing
apps with LibAS. These apps are chosen to cover the three major
acoustic sensing categories: (1) sonar-like sensing (2) inter-device
interaction, and (3) sound fingerprinting. Table 1 shows how exist-
ing projects belong to these three categories. The purpose of these
implementations is to show how LibAS can be used to build real
acoustic sensing apps and how LibAS can reduce the development
efforts.

459

MobiSys ’18, June 10–15, 2018, Munich, Germany Yu-Chih Tung, Duc Bui, and Kang G. Shin

SERVER_PORT = 50005;
JavaSensingServer.closeAll();

% 0. sensing configurations
FS = 48000; PERIOD = 2400; CHIRP_LEN = 1200;
FREQ_MIN = 18000; FREQ_MAX = 24000;
FADING_RATIO = 0.5; REPEAT_CNT = 36000;

% 1. build sensing signals
time = (0:CHIRP_LEN−1)./FS;
signal = chirp(time, FREQ_MIN, time(end),

FREQ_MAX);
signal = ApplyFadingInStartAndEndOfSignal(signal,

FADING_RATIO); % for inaudibility
as = AudioSource('demo', signal, FS, REPEAT_CNT);

% 2. parse settings for the callback
global PS; PS = struct();
PS.FS = FS; PS.SOUND_SPEED = 340; PS.thres = 0.5;
PS.matchedFilter = signal(CHIRP_LEN:−1:1);

% 3. create sensing server with callback
ss = SensingServer(SERVER_PORT, @SonarCallback,

SensingServer.
DEVICE_AUDIO_MODE_PLAY_AND_RECORD, as);

Code 1: SonarMain.m. The remotemain script defines the sensing
settings and creates a sensing server.

The first demo app is a sonar sensing on phones, which sends
high-frequency chirps and estimates the distance to nearby objects
based on the delay of received/reflected chirps. Technically, the
development pattern of such a sonar-like sensing is akin to many
existing approaches which send a sound and analyze the reflected
echoes in real time (even though the signals might be processed
differently). The second demo app is an inter-device movement
sensing based on the Doppler effect [43]. This app can be regarded
as a generalization of multiple existing inter-device interacting apps.
Wewill use this app to show the advanced features of LibAS, such as
how to control multiple devices simultaneously. The last demo app
is a graphic user interface (GUI) which can easily classify different
targeted activities based on acoustic signatures. The functionality
of this app can cover several existing projects to know the loca-
tion/status of phones by comparing the acoustic signatures. We
will utilize this app to demonstrate Matlab’s GUI support and capa-
bilities in connecting to other 3rd-party libraries to quickly validate
acoustic fingerprinting apps.

5.1 Demo App: Sonar Sensing
The first app we developed with LibAS is a basic sonar system that
continuously sends inaudible chirps to estimate the distance to
nearby objects. The distance can be measured by calculating the
delay of reflected echoes with the corresponding matched filter [46]
(for the linear chirp case, the optimal matched filter is the reverse
of sent chirps). We chose this app to illustrate the basic steps of
using LibAS for the simplicity of the necessary signal processing. It
can be easily extended to many other existing projects which also
sense the environments/objects based on the real-time processing
of the reflected sounds.

Code 1 (main script) and Code 2 (callback function) show how
this sonar app is implemented in our remote Matlab mode. As men-
tioned earlier, the main script and callback are the only two required
functions which developers need to implement for their sensing

function [ret] = SonarCallback(context, action,
data, user)

global PS; % parse settings
USER_CODE_RANGE = 1;

% 1. init callback parameters
if action == context.CALLBACK_INIT
PS.detectRange = 5; % meter

% 2. process the senisng data
elseif action == context.CALLBACK_DATA

cons = conv(data, PS.matchedFilter);
peaks = cons(cons > PS.thres);
dists = 0.5 * (peaks(2:end) − peaks(1)) * PS.

SOUND_SPEED / PS.FS;
dists = dists(dists < PS.detectRange);
ret = SenisngResultDoubleArray(dists);

% 3. user−specificied events (optional)
elseif action == context.CALLBACK_USER && user.

code == USER_CODE_RANGE,
PS.detectRange = user.valDouble;

end
end

Code 2: SonarCallback.m. The remote callback focuses on
processing each repetition of the sensing signals received.

algorithms. As the main script shown in Code 1, we first create the
desired chirp signals ranging from 18kHz to 24kHz and then pass
this created chirp signal along with the desired SonarCallback
function to the SensingServer class. This SensingServer is the
main primitive used in Matlab to communicate and control devices
via the AcousticSensingController over different platforms. A
few other constants necessary for the callback to parse the received
signal — e.g., the signal to correlate as the matched filter in this
example — can be assigned to a global variable called PS.

As the remote callback function shown in Code 2, the received
data argument can belong to 3 different types of action. When the
server is created, an action called CALLBACK_INIT will be taken to
initialize necessary constants/variables. In this example, we assign
the value of detectRange and it can later be updated in the app’s
UI. The most important part of the callback function occurs when
the received data belongs to the action CALLBACK_DATA. In this
case, the received data will be a synchronized audio clip which has
the same size and offset as the sent signal. For example, it will be
the 25ms chirp sent by the app plus many reflections following.
The synchronization (e.g., knowing where the sent signals in the
received audio start) is processed by LibAS and hidden from the
developers. So, developers can just focus on how to process each
repetition of sent signals received. This is found to be a general
behavior of acoustic sensing apps [36, 37, 45, 49–51], where the
apps usually focus on the processing of each repetition of the sent
signal. Some system may need the reference of previously-received
signals which can be done by buffering or using the context input
argument. Details of these advanced functions are omitted due to
space limit.

Since the recorded signal has already been synchronized and seg-
mented by LibAS, the processing of each recorded chirp is straight-
forward. As shown in Code 2, a matched filter, i.e., conv(), can
be directly applied to the received signal, and then the peaks (i.e.,
the indication of echoes) are identified by passing a predefined

460

Cross-Platform Support for Rapid Development of Acoustic Sensing Applications MobiSys ’18, June 10–15, 2018, Munich, Germany

Developed Matlab Callback

Generated C Callback and
Signal Processing Libraries

Copied Generated Code
for the Standalone Mode

Figure 4: Standalone callback created by Matlab Coder. The
C-based standalone callback can be automatically generated based
on algorithm developed and tested in the Matlab remote mode.

threshold. The distance to nearby objects can be estimated by mul-
tiplying half of the peak delays (after removing the convolution
offset) to the sound of speed, and then divide by the sample rate.
The objects within the detect range will be added to a return ob-
ject and then be sent back to the device for updating the app UI.
Moreover, the simplicity of callback in LibAS makes its transforma-
tion straightforward for the C-based standalone mode (it can even
be automated with the Matlab Coder API [6, 9], as the example
shown in Fig. 4). Note that we intentionally make the detect range
modifiable in this example to show the extensibility of LibAS. In
this example, this value can be adjusted in the app by calling the
sendUserEvent(code, val) function in our platform control API.
An example of sending this user-defined data can be found in the
DevApp UI as shown in Fig. 2. This extensibility is important for de-
velopers to customize their own sensing behavior with LibAS. For
example, one of our current developers uses this function to send
movement data (based on accelerometers) and then improve the
acoustic sensing performance by integrating the updatedmovement
data. See Section 7 for details of user experience of LibAS.

5.2 Demo App: Inter-Device Movement Sensing
The second demo app implemented with LibAS is the inter-device
movement sensing app based on the Doppler effect. Specifically, the
frequency shift due to the Doppler effect can be used to estimate
the velocity and distance of movements between devices. Sensing
the movement by Doppler shifts has been used to provide a virtual
input interface to IoT devices [55], create a new gesture control
between smartphones [47], and detect if two users are walking
toward each other [56]. Our demo app implemented with LibAS
can be viewed as a generalization of these movement sensing apps.

Based on Doppler’s theory [43], the relationship between the
changed movement speed and the shifted central frequency can be
expressed as: f ′c − fc = vfc/c, where the fc is the central frequency
of sent signals, f ′c is the shifted central frequency, v is the relative
velocity between devices, and c is the speed of sound. Note this
Doppler detection is usually coupled with a downsampling and

(a) Experiment settings

(b) Movements estimated by the doppler effect

70cm away

The watch is moved close to the phone
and moved back to the original position Velocity (cm/s)

Distance (cm)

Time (second) 0 10 M
ov

em
en

t (
cm

 o
r c

m
/s

)

-40

0

40

80

70cm

Figure 5:Movement sensing byDoppler shifts. The integrated
area of velocity indicates the movement shift. A demo video can be
found at https://youtu.be/At8imJVRDq4

overlapped sampling to further improve the sensing resolution and
response latency [47, 55, 56]. For example, we set the downsampling
factor to 8 with an 87% overlapping ratio. This setting can provide
a movement sensing resolution of 2cm/s instead of 17cm/s when
sensing via a 20kHz tone.

Most of our current implementation of this demo app follows a
similar pattern as in our previous demo app. Some minor changes
include using different signals (i.e., narrow-band tones) and passing
different parsing parameters to the callback (i.e., downsampling fac-
tors). The largest difference is to initialize multiple SensingServer
classes for controlling multiple devices to sense simultaneously. For
example, in this example, we have a transmitting/receiving server
that connects two devices where one is responsible for sending
the tone sound while the other is responsible for receiving and
processing it. In LibAS, developers can easily configure multiple de-
vices getting connected and then trigger the sensing among devices
together. We omit the description of how to process the callback
function of the receiving device since it is nearly identical to the
previous demo app except for applying FFT to the data argument
instead of the matched filter.

Fig. 5 shows the result of moving a Zenwatch 3 from 70cm away
toward a Nexus 6P and then moving it back to the original location.
In this example, integrating the estimated velocity can estimate the
moving distance as 64cm, which is about 6cm different from the
ground truth. Similarly to the previous demo app, this implementa-
tion needs only about 100 lines of code to write and it can be easily
executed on devices from different platforms, thus showing the
simplicity of creating acoustic sensing between devices with LibAS.
Note that this example can also be extended to other apps that
need inter-device sensing, such as aerial acoustic communication
or localization [30, 31, 35, 53]. A video of this demo app can be
found at https://youtu.be/At8imJVRDq4 [4].

5.3 Demo App: GUI for Activity Fingerprinting
The last demo app we have implemented is a graphic user inter-
face (GUI) that can classify various activities based on acoustic
signatures. This demo app is based on the property that different
activities, like placing the phone at different locations, will result in
different frequency-selective fading because the reflected acoustic
signals are different from one location to another. This acoustic
signature has been utilized in many sensing apps. For example, it

461

MobiSys ’18, June 10–15, 2018, Munich, Germany Yu-Chih Tung, Duc Bui, and Kang G. Shin

Acoustic signatures for each target

Sensing Control Pnael SVM Parameter Control Panel Real-time updated acoustic signatures and predicted results

Server Control Pnael

Target2: fist Target1: palm

Figure 6: Graphical User Interface (GUI) for fingerprinting acoustic signatures. Developers can easily classify different user-defined
actions based on acoustic signatures. A demo video of this GUI can be found at https://youtu.be/cnep7fFyJhc

can be used to distinguish rooms [44], remember the tagged lo-
cations [49], recognize the touched surface [26], and sense how
the phone is touched [39]. Using the GUI of this demo app imple-
mented with LibAS, similar fingerprinting apps can be realized
without even writing a single line of code.

The GUI of this demo app built upon LibAS is shown in Fig. 6. Af-
ter the device’s DevApp connected to the Matlab server, developers
can click the new button to create the target activity to sense. For
example, we have used this GUI to implement a novel app of sensing
hand gestures (i.e., a palm or a fist) with smartwatches. After these
targets are created using the GUI, we ask users to place the hand on
each target gesture and click the record button, which triggers the
callback function to save the audio fingerprint of that target activity.
The collected fingerprint is shown automatically in the GUI when
the recorded data is streamed by LibAS, so that developers may
easily see if it is possible to get reliable acoustic signatures for each
target activity. SVM classifiers can be built by clicking the train
button and the corresponding training parameters can be adjusted
in the right side of the control panel. Once the predict button is
clicked, the result of classification will be updated as the red text
shown in the GUI in real time. This simple GUI for fingerprinting
apps is shown to be able to identify the above-mentioned gestures
by Zenwatch 3 with a higher than 98% accuracy. A demo video of
this GUI can be found at https://youtu.be/cnep7fFyJhc [3].

This demo app shows how the GUI-support of Matlab and the
capability of integrating 3rd-party libraries, i.e., LibSVM [13], can
help develop acoustic sensing apps using LibAS. We have also used
this GUI to realize other fingerprinting apps, such as EchoTag [49],
and obtained reasonably good results in a very short time without
any coding. This GUI can be easily adapted to passive acoustic
fingerprinting apps, such as Batphone [48] and others [12, 33],

which use the sound of environments as acoustic signatures, rather
than the sensing signals sent by the device.

6 EVALUATION
We will first evaluate the overhead of our current LibAS imple-
mentation, in terms of the response latency and the pre-processing
cost. Then, we will show the adaptability of using LibAS to build
cross-platform acoustic sensing apps. Specifically, we will show
how the platform/device heterogeneity can affect our demo apps
and how these issues can be identified/mitigated by using LibAS.

6.1 Overhead
As described earlier, LibAS is a thin layer between the developers’
sensing algorithms and the sensing devices. In the standalone mode,
the performance overhead of LibAS is nearly negligible since every
component is built natively. In the remote mode, however, there
can be an additional overhead due to network connection.

6.1.1 Response latency. LibAS provides a convenient utility
function to measure the response latency of the developers’ sens-
ing configurations. We define the response latency of LibAS as the
time that sensing devices record a complete repetition of sensing
signals to the time that the sensing results based on this repeti-
tion are processed and returned from callbacks. Fig. 7(a) shows
this latency profiles under different configurations. We first show
a dummy case where the callback doesn’t process anything, but
returns a constant (dummy) sensing result instantly. This dummy
case is used to characterize the baseline overhead that is caused by
LibAS’s implementation. As shown in the figure, we repeated the
latency measurements under four different configurations, which
include (i) 2-hop (the sensing server and the device are connected

462

Cross-Platform Support for Rapid Development of Acoustic Sensing Applications MobiSys ’18, June 10–15, 2018, Munich, Germany

2hop 1hop 0hop native
Settings

0

20

40

60

La
te

nc
y

(m
s)

dummy
sonar
5x sonar

(a) Response latency

0.1 1 10 100
Preamble volume (%)

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
pr

ob
ab

ilit
y

iPhone 6s
Tizen Gear S3
Nexus 6P

(b) Preamble detection

Figure 7: Overheads. The small overhead of LibAS can support
most real-time acoustic sensing apps.

to the same 802.11n WiFi router), (ii) 1-hop (the sensing device is
connected directly to the server), (iii) 0-hop (the sensing device
is connected to a server residing in the same machine), and (iv)
standalone (the processing is executed natively and locally). In this
experiment, we always use a 2013 MacBook Air, i.e., 1.3 GHz CPU
& 8GB RAM, as the sensing server and an Android Nexus 6P as the
sensing device (except the 0-hop case where the sensing device is
the MacBook itself). The results from our implementations on iOS
and Tizen follow a similar pattern and are thus omitted (due to the
space limit).

As shown in Fig. 7(a), without considering the processing cost
of the sensing algorithm, (i.e., a dummy case), the remote mode of
LibAS can achieve an average response latency less than 40ms in a
common 2-hop setting. This latency can be reduced further to 30ms
by turning either the laptop or phone into a hotspot and connecting
it directly. Note that this 1-hop (hotspot) setting is particularly
helpful to use LibAS when WiFi is not available, e.g., testing our
sonar demo app in an outdoor environment. When both the sensing
devices and the server are located in the samemachine, the response
latency can be reduced further to 10ms. By closely anatomizing the
delay, 6ms is found to come from the way our Java socket interface
is hooked to Matlab while only the other 4ms is spent for our pre-
processing. According to our preliminarily test, implementing the
same remote function directly on Matlab’s asynchronous socket
API incurs a >250ms overhead under the same configuration, thus
making it practically impossible to provide a real-time response.
Even though our standalone mode can push the response latency
to be less than 5ms, this 0-hop setting is useful for developers to
build/test their sensing algorithms with the strong Matlab support
while keeping the latency overhead at a level similar to the native
calls. The low latency overhead of LibAS can meet the requirement
of many real-time acoustic sensing apps, such as the sonar demo app
that needs the processing to be done in 50ms (i.e., before sending
the next 2400-sample signals sampled at 48kHz).

It is important to note that, by considering the callback process-
ing delay of the developer’s sensing algorithms, the remote mode
might sometimes get an even better overall performance than the
standalone mode. For example, if we intentionally repeat the same
sonar processing 5 times in the demo app callback, i.e., the 5x sonar
case in Fig 7(a), the standalone mode will miss the 50ms deadline
while the remote mode will not. This phenomenon is caused by the
fact that a remote server (laptop) usually has more computation

resource than the sensing device (phone/watch). This fact is widely
used in offloading several computation-hungry processing, e.g.,
video decoding, to a cloud server [41] and might be necessary to
build sophisticated acoustic sensing apps in future. LibAS already
supports both modes and can automatically collect/report the per-
formance overheads, so developers can easily choose whichever
mode fits best to their purpose. As we will discuss in Section 7,
the minimal/small latency overhead of LibAS meets the real-time
requirements of our current users.

6.1.2 Preamble detection overhead. Preamble detection is an im-
portant feature provided by LibAS as it helps identify when the
start of sent signals is recorded and then truncate the received au-
dio signals into correct segments with the same size/offset of the
sent signals. Our preamble detection is based on a design similar
to existing approaches [31, 49, 50]. Specifically, the preamble is a
series of chirps (must be different from the sensing signals) that can
be efficiently identified by a corresponding matched filter [46]. The
performance of preamble detection depends on the length/band-
width of preamble signals, the detection criteria, and also on the
hardware capability. Theoretically, a long and wide-band pream-
ble usually has a high detection rate, but also incurs a long initial
sensing delay (i.e., the delay before playing the sensing signals) and
more audible noise. We currently use 10 repetitions of a 15kHz–
22kHz chirp plus a 4800 sample padding as the default preamble for
LibAS. Each chirp is 500 samples long and separated from the next
chirp by 500 samples. We set the criteria to pass the detection when
all 10 chirps are detected correctly (i.e., jitter between detected
peaks is less than 5). This ad-hoc setting is chosen based on our
experience that can support most devices from different platforms
for reliable detection of the start of signals.

Our current preamble detections have been experimented on
more than 20 devices. For the acoustic sensing apps that sense the
signal sent by itself, such as our sonar demo app, LibAS can easily
achieve higher than a 98% detection probability when 20% of the
maximum volume is used to play the preamble. On the other hand,
for apps that sense the signal sent from another device, like our
inter-device demo app, LibAS can successfully detect a device 1m
(5m) away with a higher than 90% (80%) probability. Our current
design can reliably detect the preamble sent from a device 10m
away when the retransmission of preamble is allowed. As shown
in Fig 7(b), this performance might vary with devices due to their
hardware differences. This is the reason for our choice of awideband
15kHz–22kHz preamble, which incurs fewer hardware artifacts and
frequency-selective fading as shown in the following subsections.

Note that this preamble setting might not be perfectly aligned
with every sensing app. For example, apps based on frequency-
domain response rather than time-domain information, might be
more tolerant of the segment errors. In such a case, developers
might want to loosen the detection criteria to sense devices within
a longer range or reduce the chirp bandwidth to make the pre-
amble inaudible. The preamble parameters can be easily set by
AudioSource.setPreamble() function, and it can be efficiently
tested through LibAS. We expect a better preamble design to emerge
once more developers start building apps with LibAS. One of our
current active developers using LibAS has modified our setting to
a customized short and inaudible preamble since he only targets

463

MobiSys ’18, June 10–15, 2018, Munich, Germany Yu-Chih Tung, Duc Bui, and Kang G. Shin

0 50 100
Speaker volume (%)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

Galaxy S5 (MIC)
Zenwatch 3 (MIC)
Tizen Gear S3

(a) AGC on

0 50 100
Speaker volume (%)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

Nexus 6P (MIC)
Nexus 6P (CAM)
Nexus 6P (RECOG)

(b) Different flags are used

Figure 8: Automatic gain control detections (AGC). LibAS de-
tects if AGC is enabled by sending a signal with linearly increased
volumes.

high-end smartphones with reliable microphone/speaker hardware
while another developer added a longer padding period after the
preamble to avoid overlapping it with the sensing signals when
more than 3 devices are connected.

6.2 Adaptability
Adaptability is an important performance metric of LibAS since it
is designed to support various apps, platforms, and devices. Our
demo apps have shown that LibAS’s design is general enough to
support several categories of acoustic sensing algorithms. In what
follows, we will focus on how LibAS can adapt itself to different
platforms/devices to improve the sensing performance and help
developers make the correct sensing configurations. (Other real-
world use-experience of LibAS by our current developers will be
discussed in the next subsection.)

6.2.1 Platform heterogeneity. One of the key software features
of mobile OSes that might significantly affect the performance of
acoustic sensing apps is the automatic gain control (AGC). AGC
is reasonable for voice recording because it can avoid saturating
the limited dynamic range of the installed microphone. However,
AGC is usually not desirable for acoustic sensing apps. Taking our
fingerprinting demo app as an example, AGC can alter the acoustic
signatures when the ambient noise increases, thus reducing the
prediction accuracy. AGC will also confuse the sonar demo app
because the change of time-domain response might be dominated
by AGC rather than the object reflections.

Fig. 8 shows LibAS’s utility function to identify AGC by sending a
2kHz tone over 4 seconds with a linearly increased speaker volume
(from 0% to 100%). If the AGC is not enabled, the amplitude of
received signals should increase linearly over time (in the same
way as how the signal is sent). A few examples with AGC enabled
can be found from Fig. 8(a), where the amplitude of received signals
does not increase linearly and it stops increasing after the speaker
volume reaches certain ranges.

In iOS, this AGC can be turned off by setting the session mode to
kAudioSessionMode_Measurement, but based on our experiments,
the official Android AGC API always fails to disable the microphone
AGC (e.g., not functional or indicating the API not implemented
by the manufacturer). By using LibAS to loop several audio set-
tings automatically, the response is found to vary based on the
programming AudioSource flag set to the microphone, e.g., MIC,

0 0.5 1 1.5 2 2.5
Frequency (Hz) ×104

0

20

40

60

Am
pl

itu
de

 (d
B)

Galaxy S4 (mic ch1)
Galaxy S4 (mic ch2)
Nexus 6P (mic ch1)
Nexus 6P (mic ch2)

(a) Different microphones

0 0.5 1 1.5 2 2.5
Frequency (Hz) ×104

0

10

20

30

40

50

Am
pl

itu
de

 (d
B)

iPhone5c (top speaker)
iPhone5c (bottom speaker)
iPhone6s (top speaker)
iPhone6s (bottom speaker)

(b) Different speakers

Figure 9: Frequency responses of various devices. The sensed
frequency responses vary not only with devices but also with the
microphone/speaker used to sense.

CAMCORDER, or VOICE_RECOGNITION. As shown in the example of
Fig. 8(b), setting the flag to VOICE_RECOGNITION in Nexus 6P can
disable AGC and make the response linear in the speaker volume.
Based on our experiments, setting the flag to VOICE_RECOGNITION
can actually turn off AGC for most Android devices we have tested
except for Zenwatch 3. Our DevApp has a clear UI, helping devel-
opers to select these hidden platform options, check the effects of
each option, and adapt their sensing configurations accordingly
(e.g., using the sound volume in the linear range even when the
AGC cannot be disabled).

6.2.2 Device heterogeneity. The microphones and speakers in
commodity phones are usually not designed for acoustic sensing,
especially for inaudible sensing signals. Fig. 9 shows the frequency
response of several Android and iOS devices. These results are
based on experiments of sending and receiving 5 repetitions of a
4-second frequency sweep from 0Hz to 24kHz by the same device.
This experiment was conducted in a typical room environment and
the phone was held in the air by hands, which resembles the most
common scenario of using smartphones. A similar experiment was
done previously [30], but only the microphone gains were reported.

As shown in Fig. 9, sensing signals at certain frequencies could
inherently have a 20dB higher signal strength than at other frequen-
cies. For apps that need to detect frequency shifts due to Doppler
effects, it would be more beneficial to sense in the range with flat
frequency responses. Otherwise, acoustic sensing apps would prefer
sensing at frequencies with stronger responses. Among the device
we tested, Nexus 6P and iPhone 5c are the best to have consistent
responses at different frequencies. We also noticed that iPhones
generally have a lower speaker/microphone gain than Android
devices, which could be due to the different hardware configura-
tion in iOS. The strong peak of iPhone 5c on 2250Hz (as shown in
Fig. 9(b)) is usually known as the microphone resonant frequency.
Most acoustic sensing apps should avoid sensing at this resonant
frequency because the responses might be dominated by this effect,
rather than by the target activity to sense.

This hardware heterogeneity calls for a careful design of sensing
signals and algorithms. For example, according to our experimental
results, the same sensing algorithm in our sonar demo app allows
Nexus 6P, Galaxy S7, Galaxy Note4 to sense a glass door 3m way
reliably (with more than 15dB SNR) based on a18kHz–22kHz inaudi-
ble sound. However, iPhone 6s, Galaxy S4, and Gear S3 are unable

464

Cross-Platform Support for Rapid Development of Acoustic Sensing Applications MobiSys ’18, June 10–15, 2018, Munich, Germany

to achieve a similar performance unless using an audible sound.
With LibAS, such device heterogeneity can be easily observed and
adapted with our real-time visualization support.

7 USER EXPERIENCE
To evaluate the applicability of LibAS, we collected and analyzed
feedback from three users (including experienced and novice de-
velopers) who were using LibAS for their projects. The first user
(EngineerA) is an engineer at a major smartphone manufacturer,
which sells more than 200M smartphones per year. He wanted
to build a demo app for an existing sound-based force sensing
project called ForcePhone [50]. The other two users are CS PhD
students at different universities (StudentB and StudentC). They
both wanted to build new acoustic sensing apps. StudentB is fa-
miliar with Android/Python, while StudentC has only relevant
experience in processing WiFi signals with Matlab. StudentB had
a proof-of-concept app before adapting this project to LibAS, and
StudentC started her project from scratch with LibAS.

EngineerA was the first user of LibAS and collaborated with
us. Since LibAS was not mature at that time, we provided him nu-
merous technical supports and also added new functions based
on his need. An issue that EngineerA faced was the hanging of
LibAS installation, i.e., when adding our customized socket inter-
face. This issue was later identified as a path problem and solved in
our new update. StudentB is the second user of LibAS. At the time
StudentB used LibAS, we had already published DevApp online
and documented our API. StudentB knew us but never worked on
the same project. StudentB mostly worked independently to adapt
his project to LibAS. StudentC is our third user and had no knowl-
edge of our team or LibAS. She contacted us after seeing some of
our publications on acoustic sensing apps. At the time StudentC
started using LibAS, our installation guide and examples had al-
ready been documented and made available, so she can successfully
install LibAS by herself and used our demo apps. Our study shows
that LibAS not only significantly reduced the development efforts
in real-world projects for experienced users but also lowers the bar
for developing acoustic sensing applications for novice users.

7.1 Why LibAS?
Before using LibAS, EngineerA already had the Android source
from the ForcePhone project team, but he found it challenging to
modify the sensing behaviors directly in this source. For example,
EngineerA had no idea why/how the program failed to work after
his modifications on the sensing signals since all the processing
was embedded in the native Java/C code. EngineerA wanted to
build his system using LibAS because he needed full control of the
ForcePhone project to meet his demo need.

StudentB’s goal was to develop a smartwatch localization based
on sounds (called T-Watch). Specifically, the app could estimate
smartwatches’ locations by triangulating the arrival time of signals
recorded in paired smartphones. He already had a proof-of-concept
system before using LibAS. Specifically, he developed an app on
Android that played/recorded sounds simultaneously and saved
the recorded sounds to a binary trace file. He loaded this file to
a laptop via USB cable and then processed his sensing algorithm
offline in Python. StudentB started using LibAS because he noticed

that porting his proof-of-concept Python code to a real-time demo
would be time-consuming and error-prone.

StudentC was developing an acoustic sensing app similar to
our sonar demo app, but based on an advanced FMCW sonar tech-
nique [25]. She had tried to build a standalone app on Android/iOS
to process the FMCW directly but got stuck on several issues. For
example, she was wondering why her own app could not record the
high-frequency responses and why the played high-frequency chirp
was audible. In fact, these were frequently asked by new acoustic
sensing developers. She wanted to use LibAS because our demo
apps could serve as a reference design to build her own project.

7.2 Benefits of Using LibAS
The biggest common benefit reported by all three users was the
visualization provided by LibAS’s remote mode. Such a visualiza-
tion helped them “see” and understand how the received response
changed (e.g., a higher/lower SNR) when the sensing settings were
modified. Specifically, using this visualization, EngineerA tuned
the system performance and investigated how the environmental
noise affected his demo app; StudentB identified and solved several
unseen issues such as the signal degradation caused by different
wearing positions of smartwatches; and StudentC learned the sonar
sensing capability on real devices and also noticed the potential
issues caused by reflections from ceilings/floors.

LibAS’s abstraction was another benefit these three users men-
tioned multiple times. They all reported that this abstraction helped
them focus on developing the core sensing algorithm, so they could
build/transform their projects quickly. Note that our abstraction is
designed with the consideration of future extensibility. For exam-
ple, in StudentB’s project, the sensing algorithm needed to know if
users were clicking a surface based on accelerometer data, and these
“additional” data could be easily sent by the extensible user-defined
data interface of LibAS, as described in Section 5.

The cross-platform support might not be the primary incentive
for these three developers to use LibAS, but it turned out to be an un-
expected handy feature the users enjoyed. For example, StudentB
was targeting only Android phones and smartwatches, but he later
discovered that one strong use-case for his project was to provide a
touch interface on laptops by directly using the laptop microphones.
If his app had been built natively on Android, it would be another
challenging task to transform the app to Linux/Windows, but this
was not a problem with LibAS. By using LibAS, he easily achieved
this by installing DevApp (including the platform control API) on
his laptop. He also used this function to test his project on a newly-
purchased Tizen smartwatch. The same benefit was also seen by
StudentC, when she installed DevApp on her personal iPhone and
conducted a few experiments with it. We expect the cross-platform
support to become a more attractive feature when users notice the
effort of cross-platform development is significantly reduced by
using LibAS.

7.3 Estimated Code Reduction
We analyze the code reduction of these three use-cases to estimate
the potential saving of effort when using LibAS. Note that this
estimation is not perfectly accurate since the apps developed with

465

MobiSys ’18, June 10–15, 2018, Munich, Germany Yu-Chih Tung, Duc Bui, and Kang G. Shin

LibAS by our users are not completely identical to the original/ref-
erence implementations. For example, the ForcePhone source code
includes some demo/test activities, but they are not necessary for
EngineerA. There are also no real-time processing components in
StudentB’s original offline Python code since he built the real-time
demo app only with LibAS. We have tried our best to estimate
the (approximate) code reduction fairly by ensuring the code w/
or w/o LibAS implements the same functionality. Specifically, we
remove all components from the original/reference system that are
not used in our users’ implementations with LibAS (such as the
demo/test activities). We use our sonar demo app and an existing
sensing app called BumpAlert [51] as the reference for StudentC’s
case since StudentC has not yet finished her project. The trend of
code reduction should be similar if she keeps building her system
upon our sonar demo app.

Table 2 shows the lines of code estimated with the open-sourced
cloc tool [10], where all three use-cases are shown to have more
than 78% reduction of code.Most of the reduction comes from the ab-
straction of hiding platform-dependent code. EngineerA is the only
onewho includes LibAS’s platform control API in his own appwhile
others use our pre-built DevApp. Even in this case, his app’s Java
implementation is still significantly shorter than the original design
(490 lines instead of 3913) since most audio/network/processing-
related components are covered by LibAS. Note that this reduction
should be even more prominent if we consider StudentB’s and
StudentC’s use of LibAS on Linux/Win, Tizen, and iOS devices.

After taking a close look at StudentB’s original implementation,
we notice that 1745 lines of code are used to handle the audio
recording and 370 lines of code are used for communicating the
recorded trace. These lines of code are reduced to 62 and 22 lines
with LibAS, respectively. The code for the UI is nearly identical
for both implementations (w/ or w/o LibAS), but there is a large
reduction of code on processing the received signals. He told us
this reduction exists because he sometimes needed to duplicate his
Python processing on Android to check some performance metrics
before going to the offline parser. This problem does not exist when
LibAS is used since it allows the designed algorithm to be executed
on different platforms. Even though our estimation is not general,
it is still an interesting indicator of how LibAS can save developers’
efforts in building acoustic sensing apps on different platforms.

8 DISCUSSION
LibAS is a cross-platform library to ease the development of mobile
acoustic sensing apps. However, when developers want to release
their production apps, they might still need to implement the cus-
tomized UI on multiple platforms by using the specific platform
development kits. One way to solve this problem is to package
LibAS as a native plug-in for existing cross-platform UI libraries,
such as PhoneGap [7] or ReactNative [8]. Some other features —
that one may want to see — include the support of Apple’s Watch
OS4 and Tizen TV, more demo examples, and a crowdsourcing
platform to share developers’ sensing configurations.

LibAS is designed mainly for real-time active acoustic sensing
apps, such as the sonar-like sensing example mentioned earlier.
LibAS could also support “non-sensing” apps, such as real-time

ForcePhone (no UI) T-Watch (offline) BumpAlert (no camera)
Java 3913 Java 4080 Java 1734
Matlab 1992 Python 1998 Python 765
C/C++ 2273 C/C++ 115 C/C++ 353

w/ LibAS w/ LibAS Sonar demo app
Matlab 490 Matlab 1390 Matlab 279
Java 446
C/C++ 153
Reduction 86% Reduction 78% Reduction 90%

Table 2: Estimated code reductions. The significant reduction
of code demonstrates the capability of LibAS to save development
time/effort.

sound masking or authentication based on acoustic signal process-
ing [17, 24]. It is used to implement a demo to send data over devices
by inaudible chirps [5]. By setting a dummy null signal to send,
LibAS can also be used for passive acoustic sensing apps, i.e., sens-
ing by monitoring the recorded environment noises [48]. However,
there is not much room to reduce platform-dependent code if apps
need not play the sensing signals actively. Current LibAS supports
only those apps that send fixed and repeated sensing signals (which
is the common case for most acoustic sensing projects). We chose
such a design to simplify the abstraction. Adding advanced APIs to
dynamically change the sensing signals is part of our future work.

LibAS has been open-sourced for several months and also used
by at least 6 developers. We expect the open-source community to
try and refine the idea of LibAS. For example, based on EngineerA’s
suggestion, we added a save/replay function that allowed develop-
ers to keep their sensed signals in a file and then replay it with their
assigned callback. This function is useful since developers might
want to try different parameters/algorithms based on the same
experiment data. StudentB has become an active contributor, and
helped build several useful UI features on our DevApp. We expect
to see more changes like these, enabling LibAS to help acoustic
sensing apps become truly ubiquitous.

9 CONCLUSION
In this paper, we have presented LibAS, a cross-platform framework
to ease the development of acoustic sensing apps. Developing cross-
platform acoustic sensing apps with LibAS is shown to reduce lines
of code by up to 90% and provide cross-platform capabilities with
minimal overheads. LibAS has been open-sourced and currently
supports Android, iOS, Tizen, and Linux/Windows. Three develop-
ers have already used LibAS to build their own apps and they all
agree that it saves their effort significantly in developing acoustic
sensing apps.

10 ACKNOWLEDGEMENTS
The authors would like to thank Arun Ganesan, Timothy Trippel,
and Kassem Fawaz of RTCL at University of Michigan, the current
users of LibAS, the anonymous reviewers, and the shepherd for
constructive comments on the earlier versions of this paper. The
work reported in this paper was supported in part by NSF under
Grant CNS-1646130.

466

Cross-Platform Support for Rapid Development of Acoustic Sensing Applications MobiSys ’18, June 10–15, 2018, Munich, Germany

REFERENCES
[1] Build MEX function from C/C++ source code. https://www.mathworks.com/help/

matlab/ref/mex.html.
[2] Cocos2d-x: a suite of open-source, cross-platform, game-development tools. http:

//www.cocos2d-x.org/.
[3] LibAS Demo: Fingerprint GUI. https://youtu.be/cnep7fFyJhc.
[4] LibAS Demo: Movement Sensing. https://youtu.be/At8imJVRDq4.
[5] LibAS Example: Chirp Messenger. https://github.com/yctung/

LibAcousticSensing/tree/master/Example/ChirpMessenger.
[6] MATLAB Coder App. https://www.mathworks.com/products/matlab-coder/apps.

html.
[7] PhoneGap: build amazing mobile apps powered by open web tech. http://

phonegap.com/.
[8] ReactNative: Learn once, write anywhere: Build mobile apps with React. https:

//facebook.github.io/react-native/.
[9] The joy of generating c code from Matlab. https://www.mathworks.com/company/

newsletters/articles/the-joy-of-generating-c-code-from-matlab.html.
[10] AlDanial. Count Lines of Code. https://github.com/AlDanial/cloc.
[11] M. T. I. Aumi, S. Gupta, M. Goel, E. Larson, and S. Patel. Doplink: Using the

doppler effect for multi-device interaction. In Proceedings of ACM UbiComp ’13,
pages 583–586.

[12] M. Azizyan, I. Constandache, and R. Roy Choudhury. Surroundsense: Mobile
phone localization via ambience fingerprinting. In Proceedings of ACM MobiCom
’09, pages 261–272.

[13] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[14] S. Chung and I. Rhee. vtrack: Virtual trackpad interface using mm-level sound
source localization for mobile interaction. In Proceedings of ACM UbiComp ’16,
pages 41–44.

[15] S. Elmalaki, L. Wanner, and M. Srivastava. Caredroid: Adaptation framework for
android context-aware applications. In Proceedings of ACM MobiCom ’15, pages
386–399.

[16] X. Fan and K. Wong. Migrating user interfaces in native mobile applications:
Android to ios. In Proceedings of MOBILESoft ’16, pages 210–213.

[17] H. Feng, K. Fawaz, and K. G. Shin. Continuous authentication for voice assistants.
In Proceedings of ACM MobiCom’17, pages 343–355.

[18] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo. Dsp.ear: Leveraging co-
processor support for continuous audio sensing on smartphones. In Proceedings
of ACM SenSys ’14, pages 295–309.

[19] M. Goel, B. Lee, M. T. Islam Aumi, S. Patel, G. Borriello, S. Hibino, and B. Begole.
Surfacelink: Using inertial and acoustic sensing to enable multi-device interaction
on a surface. In Proceedings of ACM CHI ’14, pages 1387–1396.

[20] S. Gupta, D. Morris, S. Patel, and D. Tan. Soundwave: Using the doppler effect to
sense gestures. In Proceedings of ACM CHI ’12, pages 1911–1914.

[21] C. Harrison, J. Schwarz, and S. E. Hudson. Tapsense: Enhancing finger interaction
on touch surfaces. In Proceedings of ACM UIST ’11, pages 627–636.

[22] C. Harrison, D. Tan, and D. Morris. Skinput: Appropriating the body as an input
surface. In Proceedings of ACM CHI ’10, pages 453–462.

[23] T. Kaler, J. P. Lynch, T. Peng, L. Ravindranath, A. Thiagarajan, H. Balakrish-
nan, and S. Madden. Code in the air: Simplifying sensing on smartphones. In
Proceedings of ACM SenSys ’10, pages 407–408.

[24] N. Karapanos, C. Marforio, C. Soriente, and S. Čapkun. Sound-proof: Usable two-
factor authentication based on ambient sound. In Proceedings of the 24th USENIX
Conference on Security Symposium, SEC’15, pages 483–498. USENIX Association,
2015.

[25] M. Kunita. Range measurement in ultrasound fmcw system. Electronics and
Communications in Japan (Part III: Fundamental Electronic Science), 90(1):9–19,
2007.

[26] K. Kunze and P. Lukowicz. Symbolic object localization through active sampling
of acceleration and sound signatures. In Proceedings of UbiComp ’07, pages
163–180.

[27] N. D. Lane, P. Georgiev, and L. Qendro. Deepear: Robust smartphone audio sens-
ing in unconstrained acoustic environments using deep learning. In Proceedings
of ACM UbiComp ’15, pages 283–294.

[28] G. Laput, E. Brockmeyer, S. E. Hudson, and C. Harrison. Acoustruments: Passive,
acoustically-driven, interactive controls for handheld devices. In Proceedings of
ACM CHI ’15, pages 2161–2170.

[29] G. Laput, X. A. Chen, and C. Harrison. Sweepsense: Ad hoc configuration
sensing using reflected swept-frequency ultrasonics. In Proceedings of the 21st
International Conference on Intelligent User Interfaces, IUI ’16, pages 332–335,
2016.

[30] P. Lazik and A. Rowe. Indoor pseudo-ranging of mobile devices using ultrasonic
chirps. In Proceedings of ACM SenSys ’12, pages 99–112.

[31] H. Lee, T. H. Kim, J. W. Choi, and S. Choi. Chirp signal-based aerial acoustic
communication for smart devices. In Proceedings of IEEE INFOCOM ’15, pages
2407–2415.

[32] F. Li, H. Chen, X. Song, Q. Zhang, Y. Li, and Y. Wang. Condiosense: High-
quality context-aware service for audio sensing system via active sonar. Personal
Ubiquitous Comput., 21(1):17–29, Feb. 2017.

[33] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell. Soundsense:
Scalable sound sensing for people-centric applications on mobile phones. In
Proceedings of ACM MobiSys ’09, pages 165–178.

[34] W. Mao, J. He, and L. Qiu. Cat: High-precision acoustic motion tracking. In
Proceedings of ACM MobiCom ’16, pages 69–81.

[35] R. Nandakumar, K. K. Chintalapudi, V. Padmanabhan, and R. Venkatesan. Dhwani:
Secure peer-to-peer acoustic nfc. In Proceedings of ACM SIGCOMM ’13, pages
63–74.

[36] R. Nandakumar, S. Gollakota, and N. Watson. Contactless sleep apnea detection
on smartphones. In Proceedings of ACM MobiSys ’15, pages 45–57.

[37] R. Nandakumar, V. Iyer, D. Tan, and S. Gollakota. Fingerio: Using active sonar for
fine-grained finger tracking. In Proceedings of ACM CHI ’16, pages 1515–1525.

[38] S. Nirjon, R. F. Dickerson, P. Asare, Q. Li, D. Hong, J. A. Stankovic, P. Hu, G. Shen,
and X. Jiang. Auditeur: A mobile-cloud service platform for acoustic event
detection on smartphones. In Proceeding of ACM MobiSys ’13, pages 403–416.

[39] M. Ono, B. Shizuki, and J. Tanaka. Touch & activate: Adding interactivity to
existing objects using active acoustic sensing. In Proceedings of ACM UIST ’13,
pages 31–40.

[40] C. Peng, G. Shen, Y. Zhang, Y. Li, and K. Tan. Beepbeep: A high accuracy acoustic
ranging system using cots mobile devices. In Proceedings of ACM SenSys ’07,
pages 1–14.

[41] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govindan. Odessa:
Enabling interactive perception applications on mobile devices. In Proceedings of
ACM MobiSys ’11, pages 43–56.

[42] L. Ravindranath, A. Thiagarajan, H. Balakrishnan, and S. Madden. Code in the
air: Simplifying sensing and coordination tasks on smartphones. In Proceedings
of HotMobile ’12, pages 4:1–4:6.

[43] J. Rosen and L. Q. Gothard. Encyclopedia of Physical Science (Facts on File Science
Library), Volume 1 & 2. Facts on File, 2010.

[44] M. Rossi, J. Seiter, O. Amft, S. Buchmeier, and G. Tröster. Roomsense: An indoor
positioning system for smartphones using active sound probing. In Proceedings
of ACM AH ’13, pages 89–95.

[45] W. Ruan, Q. Z. Sheng, L. Yang, T. Gu, P. Xu, and L. Shangguan. Audiogest: Enabling
fine-grained hand gesture detection by decoding echo signal. In Proceedings of
ACM UbiComp ’16, pages 474–485.

[46] S. Salemian, M. Jamshihi, and A. Rafiee. Radar pulse compression techniques. In
Proceedings of WSEAS AEE’05, pages 203–209.

[47] Z. Sun, A. Purohit, R. Bose, and P. Zhang. Spartacus: Spatially-aware interaction
for mobile devices through energy-efficient audio sensing. In Proceeding of ACM
MobiSys ’13, pages 263–276.

[48] S. P. Tarzia, P. A. Dinda, R. P. Dick, and G. Memik. Indoor localization without
infrastructure using the acoustic background spectrum. In Proceedings of ACM
MobiSys ’11, pages 155–168.

[49] Y.-C. Tung and K. G. Shin. Echotag: Accurate infrastructure-free indoor location
tagging with smartphones. In Proceedings of MobiCom ’15, pages 525–536.

[50] Y.-C. Tung and K. G. Shin. Expansion of human-phone interface by sensing
structure-borne sound propagation. In Proceedings of ACM MobiSys ’16, pages
277–289.

[51] Y. C. Tung and K. G. Shin. Use of phone sensors to enhance distracted pedestrians’
safety. IEEE Transactions on Mobile Computing, PP(99):1–1, 2017.

[52] J. Wang, K. Zhao, X. Zhang, and C. Peng. Ubiquitous keyboard for small mobile
devices: Harnessing multipath fading for fine-grained keystroke localization. In
Proceedings of ACM MobiSys ’14, pages 14–27.

[53] Q.Wang, K. Ren,M. Zhou, T. Lei, D. Koutsonikolas, and L. Su. Messages behind the
sound: Real-time hidden acoustic signal capture with smartphones. In Proceedings
of ACM MobiCom ’16, pages 29–41.

[54] W. Wang, A. X. Liu, and K. Sun. Device-free gesture tracking using acoustic
signals. In Proceedings of ACM MobiCom ’16, pages 82–94.

[55] S. Yun, Y.-C. Chen, and L. Qiu. Turning a mobile device into a mouse in the air.
In Proceedings of ACM MobiSys ’15, pages 15–29.

[56] H. Zhang, W. Du, P. Zhou, M. Li, and P. Mohapatra. Dopenc: Acoustic-based
encounter profiling using smartphones. In Proceedings of ACM MobiCom ’16,
pages 294–307.

[57] Z. Zhang, D. Chu, X. Chen, and T. Moscibroda. Swordfight: Enabling a new class
of phone-to-phone action games on commodity phones. In Proceedings of ACM
MobiSys ’12, pages 1–14.

467

https://www.mathworks.com/help/matlab/ref/mex.html
https://www.mathworks.com/help/matlab/ref/mex.html
http://www.cocos2d-x.org/
http://www.cocos2d-x.org/
https://youtu.be/cnep7fFyJhc
https://youtu.be/At8imJVRDq4
https://github.com/yctung/LibAcousticSensing/tree/master/Example/ChirpMessenger
https://github.com/yctung/LibAcousticSensing/tree/master/Example/ChirpMessenger
https://www.mathworks.com/products/matlab-coder/apps.html
https://www.mathworks.com/products/matlab-coder/apps.html
http://phonegap.com/
http://phonegap.com/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://www.mathworks.com/company/newsletters/articles/the-joy-of-generating-c-code-from-matlab.html
https://www.mathworks.com/company/newsletters/articles/the-joy-of-generating-c-code-from-matlab.html
https://github.com/AlDanial/cloc
http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Abstract
	1 Introduction
	2 Related Work
	3 System Design
	3.1 Design Challenges
	3.2 Remote Mode
	3.3 Standalone Mode
	3.4 Expected Development Flow
	3.5 Cross-platform Support

	4 Implementation
	5 Demonstrative Applications
	5.1 Demo App: Sonar Sensing
	5.2 Demo App: Inter-Device Movement Sensing
	5.3 Demo App: GUI for Activity Fingerprinting

	6 Evaluation
	6.1 Overhead
	6.2 Adaptability

	7 User Experience
	7.1 Why LibAS?
	7.2 Benefits of Using LibAS
	7.3 Estimated Code Reduction

	8 Discussion
	9 Conclusion
	10 Acknowledgements
	References

