~

~

~

0T0Z -9 ION VYH SNOHL NIANYL VYA NIL ONOQH.L AHON ONQD NAIA — 0SM WAND 2,0@ ONVOH INd

TRUONG PAI HOC BACH KHOA HA NOI
VIEN CONG NGHE THONG TIN VA TRUYEN THONG

*

PO AN
TOT NGHIEP PAI HOC

NGANH CONG NGHE THONG TIN

XAY DUNG PHUONG PHAP KIEM PINH
TIEN TRINH BPEL

Sinh vién thyuc hién : Bui Hoang Duc

Lop CNPM — K50
Giao vién huéng dan: PGS.TS.

Huynh Quyét Thing

HA NOI 6-2010

HANOI UNIVERS HANOI UNIVERSITY OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

*

A METHOD OF
BPEL PROCESS
VERIFICATION

SUBMITTED JUNE/2010 IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF ENGINEER OF SCIENCE IN

COMPUTER SCIENCE

Student : Bui Hoang D

Software Engineering — K50
Supervisor : A/Prof. Ph.D.

Huynh Quyét Thing

PHIEU GIAO NHIEM VU PO AN TOT NGHIEP

1. Théng tin vé sinh vién

Ho va tén sinh vién: Bui Hoang Buc

bién thoai lién lac: 0972347051 Email: ducbuihoang@gmail.com
Lop: CNPM A — K50 Hé dao tao: Dai hoc chinh quy
Do an tét nghiép duoc thuc hién tai: Bo mén CNPM

Thoi gian lam DATN: T ngdy 21/12 /2010 dén 28/ 05 /2010

2. Muc dich noi dung cia BATN

Dé xuit va xay dya thuat toan cing cong cu dé kiém dinh céc dich vu web phic hop
duoc tich phéi bai tién trinh BPEL, cu thé 1 dich chuyén cac tién trinh BPEL sang
dang d6 thi ludng diéu khién cd dan nhan, roi dich chuyén sang chwong trinh viét
bang ngbn ngit Promela. Bé minh hoa tao ra cong cu cai dat cac thuat toan trén
nham kiém dinh cac tién trinh BPEL véi cac thudc tinh thong dung.

3. C4c nhiém vu cu thé cia PATN

(1) Nghién ctu kién tric phan mém huéng dich vy, dich vy web va ngdn ngit thuc
thi quy trinh nghiép vu (BPEL).

(2) Nghién ciru cac phuong phéap hinh thiic trong phét trién phan mém, dac biét 1a
phuong phap kiém dinh mé hinh cting céc trinh kiém tra mé hinh.

(3) Xay dung phuong phap kiém dinh cac tién trinh dic ta bang BPEL st dung
trinh kiém tra mé hinh Spin.

(4) Xay dung céc cau trdc dix liu dé xir ly céc tién trinh BPEL va d6 thi ludng
diéu khién c6 dan nhan va sinh ma ngudn cia ngén ngit Promela mot cach co
hé thong.

(5) Xay dung cong cu thyuc hién cac phuong phap va giai phap trén.

(6) Danh gia phuong phap va thur nghiém céng cu trén.

4. L&i cam doan cua sinh vién:

T6i — Bui Hoang Durc - cam két DATN 1a cong trinh nghién cttu cua ban than toi
dudi sy huéng dan cua PGS.TS Huynh Quyét Thang.

Cac két qua néu trong DATN 1a trung thyuc, khdng phai 13 sao chép toan vin cua bat
ky cong trinh nao khéc.

Ha Noi, ngay thang nam
Téc gia DATN

Bui Hoang Puc

Student: Bui Hoang birc, K50, Software Engineering A Page i

5. X&c nhan cua gido vién hudng dan vé mic do hoan thanh cia PATN va cho phép
bao vé:

Ha Noi, ngay thang nam
Gio vién huéng dan

PGS.TS. Hupnh Quyét Thang

Student: Bui Hoang Pirc, K50, Software Engineering A Page ii

ABSTRACT OF THESIS

This graduation thesis works towards an effective solution of verifying composite
web services composed using Business Process Execution Language (BPEL), which
is the language specialized for the composition of distributed web services.

First, the author provides the theoretical foundations for service-oriented
architecture, formal methods in software verification, underlying formal model of
Promela language and the Spin model checker. After that, the problem of verifying
BPEL business process specifications and current research approaches that have
been conducted on the world are presented. Basing on these research approaches,
the author propose a new solution that includes transformation algorithms.

To illustrate the proposed solution, the author developed a tool called BVT (BPEL
Verification Tool) that includes the implementation of transformation algorithms
and several metamodels. Finally, some testing results and evaluation of the solution
will be presented.

Student: Bui Hoang DPirc, K50, Software Engineering A Page iii

TOM TAT NOI DUNG PO AN TOT NGHIEP

Do 4&n tét nghiép nay nghién ctiu giai phap cho bai toan kiém dinh céc dich vu web
phtc hop duoc tich phdi bang chwong trinh viét bang ngdn ngir thuc thi quy trinh
nghiép vu (BPEL), ngdn ngit chuyén dung cho tich phdi cac dich vu web phan téan.

Dau tién, tac gia trinh bay vé co so ly thuyét cua kién tric hudng dich vy, cac
phuong phap hinh thic trong kiém dinh phan mém, mé hinh hinh thac caa ngén
ngit Promela va trinh kiém tra mé hinh Spin. Sau d6 13 mé ta vé van dé kiém dinh
cac dac ta quy trinh nghiép vu BPEL va cac hudng nghién ciru da duoc thyuc hién
trén thé giéi. Dya trén nhitng huéng nghién ctu nay tac gia d& xuat mot giai phap
méi cing cac thuat toan dich chuyén.

Pé minh hoa cho giai phap dé xuat, tac gia xay dung cong cu goi la BVT (BPEL
Verification Tool) cai dat cac thuat toan cing véi cac mo hinh ddi tugng. Cudi cing
la két qua thtr nghiém, danh gia giai phap dé xuat.

Student: Bui Hoang birc, K50, Software Engineering A Page iv

LOI CAM ON

Trudce hét, em xin dugc giri 101 cam on sdu sic t6i cac thiy cb gido trong truong
Pai hoc Bach Khoa Ha N§i ndi chung va cac théy cd trong Vién Cong Ngh¢ Thong
Tin va Truyen Thong, bo mon Cong nghé phan mém néi riéng di tan tinh giang
day, truyén dat cho em nhiing kién thirc, nhitng kinh nghiém quy bau trong sudt 5
nam hoc tap va rén luyén tai truong.

Em xin dugc gui 1oi cam on dén PGS. TS. Huynh Quyét Thang, giang vién bd
mon Coéng Nghé Phan Mém, Vién Cong Nghé Thong Tin va Truyén Thong, truong
dai hoc Bach Khoa Ha Ndi da tan tinh giap d6 em trong sudt qué trinh thyc hi¢n dd
an. Ngoai ra, em xin dugc chan thanh cam on thac si Pham Thi Quynh, giang vién
khoa Cong ngh¢ thong tin truong dai hoc Su pham Ha Noi, nghién ctru sinh tai Vién
Cong Ngh¢ Thong Tin va Truyén Thong, dai hoc Bach Khoa Ha Ngi da giup d& em
vé mit ¥ twong mot sd thuat toan va nhan xét bai bao trong dé tai nay.

Cudi cing, em xin duoc gui 161 cam on chan thanh t6i gia dinh, ban be da dong
vién, cham soc, dong gop y kién va giup d& trong qua trinh hoc tap, nghién ctru va
hoan thanh d6 an t6t nghiép.

Ha Noi, ngay 28 thang 05 nam 2010
Bui Hoang Btic
Sinh vién 16p CNPM A — K50

Vién Cong Nghé Thong Tin va Truyén Thong
Pai hoc Bach Khoa Ha Noi

Student: Bui Hoang birc, K50, Software Engineering A Page v

Table of Contents

TabIe OF CONTENTSviiiieiieiiee et a e nee e 1
LISE OF FIQUIES ..ttt ettt nbeenbe et 3
LSt OF TADIES. ... b 4
ABBREVIATIONS TABLE......cc et 5
PREFACE ..ottt sttt e et e neen e e teebenne e e 6
Chapter 1. INTRODUCTIONocoiiiiece ettt 7
1.1. Service-oriented Architecture and Web Services.........cccocvvvvvenieivninnennnn 7
1.2. Web Service Composition and BPELcccccceviviviieiiececcece e, 11
1.3. Formal Methods and Model ChecKingccccovveiiiiiiiiinnieiiese e 15
1.4. The Spin Model CheCKer........cooiviiiiie e 16
R I [011 0o [Tox 1 To o SRS PR 16
1.4.2. Underlying models and verification processcccccevvvevveerveesvnennne 17

1.5, Promela LangUagec.cccviuiiiiiieiie ettt 23
CHAPTER SUMMARY ..ottt sttt 29
Chapter2. BPEL PROCESSES VERIFICATION PROBLEM AND
PROPOSED SOLUTION ..ottt 30
2.1. BPEL Processes Verification Problem and Current Research Trends........ 30
2.2. Proposed Solution ArChItECUNE..........coviviiiiiieee e 34
2.2.1. Labeled Control FIOW Graph ... 36

2.3. Proposed AlQOritMSccviiiiiiece e 36
2.3.1. Algorithm of transforming from BPEL documents to labeled flow
(010 0T 0] 10 =T] SRS 36
2.3.2. Algorithm of transforming from labeled flow control graphs to Promela

O1 00 (11 PR PPN 40
CHAPTER SUMMARY ..ottt 50
Chapter 3. IMPLEMENTATION.......coiiiiiiieie st 51
3.1, TOOl ArCHITECIUIE......eiieece e 51
3.2, Metamodels IN BVT ..ot 52
3.2.1. BPEL Metamodel.........ccoiiiiiiiie e 52
3.2.2. LCFG MOGEL ...t 53

Student: Bui Hoang birc, K50, Software Engineering A Page 1

3.2.1. Promela metamodeloooooeeeeeeeeee et 54

3.3. Transformer core module — implementation of algorithms......................... 57
3.4. Other features and tECANIQUESccveueiiiiieiic e 59
CHAPTER SUMMARY ..ottt 60
Chapter 4. TOOL TESTING AND METHOD EVALUATIONccccovvivivrrnene 61
4.1, A Transformation TeSt.......ccieiiieiiiiiiieeie e 61
4.2. Some Screenshots Of BV Toocv oo 67
4.3, EVAIUALIONS ...t 69
4.3.1. Evaluation of proposed algorithms...........cccocvviiiiniinninniniieeieens 69
4.3.2. Evaluation of BPEL verification toolcccocovininiininniiiee e 71
CHAPTER SUMMARY ..ottt 71
CONCLUSIONS AND FUTURE WORKS.cocotiiiiiene e 72
Established AChIEVEMENTS.........coiuiiiiiii e 72
FULUIE WOTKS ... ittt ene e e nns 72
CONCIUSTON ...t ettt ettt nb et e b b 73
Appendix A. Paper (VIBINAMESE)ocvvieeiiriie e esie et sree s 74
Appendix B. Some Tools And Libraries Used In The ThesiSccccccovvviveiiveernnnnne. 84
B L. JAXB i ————————————— 84

= N (1 - o | o 1 SRS 84
B3 JGIaPN .. 85
B4, JSPIN . 85
Appendix C. Javadoc of Main Packages in BVT.......cccccovevieiiie e 85
BIDHOGIaPNY ... 87

Student: Bui Hoang birc, K50, Software Engineering A Page 2

List of Figures

Figure 1-1 Basic elements 0f SOAooiiiiiiie e 9
Figure 1-2 Web service triangle architeCture...........cccovevvevveii v 10
Figure 1-3 Web service composition in orchestration style............cccccoevviieiiennnenn, 11
Figure 1-4 Web service composition in choreography stylecccoooeviiiiiiiennnnn, 11
Figure 1-5 BPEL doCUumMent SEFUCTUIEcoviiiieiiecie e 14
Figure 1-6 Transition relation for the sample model in Listing 1.1............cccoveneee. 20
Figure 1-7 State diagram of if-statementcccceveeiieii i 26
Figure 2-1 Transformation process from BPEL to Promela and verification result.35
Figure 2-2 EIemMentS IN @ LCFGccoo i 36
Figure 3-1 BPEL Verification Tool architeCtureccocovvvevveiieie v, 52
Figure 3-2 Classes in model.graph package.........ccccocevveiiiiieiiciicce e 55
Figure 3-3 Classes in package transformer.bl..........ccccccovveiiiniiiicic e, 58
Figure 3-4 Classes in package transformer.lp......cccocovviiiiiiiiiiicc e 59
Figure 4-1 LCFG for [0anApPProval ProCesSScccueeieerieeiiieesieeseeesieeseeesneesseeens 61
Figure 4-2 BVT screenshot — opening a BPEL document............ccccooevevcievieecinenne, 67
Figure 4-3 BVT screenshot — exporting a graph in many file formats...................... 67
Figure 4-4 BVT screenshot - transformation from a BPEL process into a Promela
010 o [USRS 68

Figure 4-5 BVT screenshot - saving the generated Promela program to a text file..68
Figure 4-6 BVT screenshot - verifying the generated Promela program with a
[010] o 1=] YOO PP R TOPRPOP 69
Figure B-1 JAXB AIChItECIUIEocvee e 84

Student: Bui Hoang birc, K50, Software Engineering A Page 3

List of Tables

Table 1.1 Comparison of traditional and service-oriented programming................... 9
Table 1.2 Basic activitieS deSCrPLiONScccveiieeiie i 13
Table 1.3 Structured activities desSCriPtioNScccveveeieeie e 13
Table 1.4 Numerical data types in Promela..........cccooviiiiiiiesiese e 23
Table 2.1 Current reSearCh trendscooveieieiieie s 33
Table 2.2 Mapping structured activities and <process> element to LCFG constructs
... 40
Table 2.3 Resolved mapping rules for BPEL elementscccoccveiieiiniiniinsnnnn 41
Table 2.4 XML-Promela Data Type Conversion RUIES...........ccccvvviiiininiiininnen 44
Table 2.5 Mapping rules for LCFG constructs that represent structured activities..48
Table 3.1 Types of N0des iN LCFG ..o 54
Table 4.1 Generated Promela program for loanApproval processc.ccceevevvvenne. 64
Table 4.2 Default verification of loanApproval Promela program with Spin 65
Table 4.3 Verification result for a property of loanApproval process.........c...c....... 66
Table 4.4 SOIULIONS COMPAIISONeevieiiee et e et e e e snes 70

Student: Bui Hoang birc, K50, Software Engineering A Page 4

ABBREVIATIONS TABLE

No. | Abbreviation | Full name Explanation
1. |BPEL Business Process Execution | XML-based language, designed
Language for composing web services
2. |BVT BPEL Verification Tool Tool that realizes the verification
method and data structures
3. |DOT
4. |JAXB Java Architecture for XML
Binding
5. |JAXP Java APl for XML
Processing
6. | LCFG Labeled Control Flow | Directed graph, representing the
Graph flow of BPEL process
7. |LTL Linear Temporal Logic A kind of logic, can be used to
represent properties of a system
8. | Promela Programming language for
specifying models
9. |SOA Service-oriented
Architecture
10. | SOAP Simple Object Access | Protocol for web services
Protocol interaction
11. | Spin A popular model checker
12. | WSDL Web Service Description | XML-based language, designed
Language to describe provided services
13. | XML Extensible Markup
Language

Student: Bui Hoang birc, K50, Software Engineering A

Page 5

PREFACE

Today, service-oriented architecture (SOA) is advanced software architecture SOA
and includes a set of principles to build flexible distributed applications more
efficiently. In SOA implementation technologies, web services are supported by
most of major vendors. Web services can be composed using existing web services
and BPEL is the de-facto language to build those composite web services. The
composition of web services using BPEL processes is error-prone so its correctness
needs to be verified.

In this thesis, | propose a method for verifying BPEL processes. The method can be
integrated into SOA software development process to find errors at early stage and
create highly reliable composite web services.

The objectives of this thesis are as follows:

(1) Studying Service-oriented Architecture, Web Service and Business Process
Execution Language (BPEL).

(2) Studying formal methods in software development, especially model checking
method and model checkers.

(3) Developing a method for verifying business processes written in BPEL using
the Spin model checker.

(4) Developing data structures for processing BPEL processes and labeled control
flow graph and generating Promela language source code in a systematic
manner.

(5) Developing a tool that realizes the above method and data structures.

(6) Evaluating the above method and testing the tool.

Student: Bui Hoang birc, K50, Software Engineering A Page 6

Chapter 1. INTRODUCTION

In this chapter
Service-oriented architecture and web services.
Overview of formal methods and model checking.

Main components in Promela language.
The Spin model checker and its underlying model and verification process.

In modern fast changing business environment, enterprise application need to be
more flexible so it can easily change when business process changes. Moreover,
when the software industry develops, many standards and technologies emerge.
Software developed on different technologies is often not compatible to each other.
The integration of enterprise applications which are developed on different
platforms or technologies becomes a significant challenge.

The service oriented software architecture provides interoperability for software
development. SOA can be implemented using any service-based technology such as
CORBA, EJB and Web Service. In those technologies, Web Service, which is an
open standard, is widely supported and adopted.

Another essential requirement of software development is the correctness and
reliability. Applying formal methods which are mathematics and theoretical models
to software development lifecycle can create very high quality software. Model
checking is a formal method in a software verification that systematically checks
whether a property holds on a model of software.

1.1. Service-oriented Architecture and Web Services

Service-oriented Architecture is a set design principles in which the building
elements are services. Each service exposes a set of functionalities that other
services can use.

According to [1], there are many differences between traditional programming
(procedure, object-oriented programming methodologies). The key differences are
shown in the table below.

Traditional programming ‘ Service-oriented programming

Comparisons on software development strategies

Goal Know programming language | Know the overall application
constructs and apply them for | architecture and how to compose
problem solving applications using existing
component services.

Student: Bui Hoang birc, K50, Software Engineering A Page 7

Focus On hardware and software | On service specification, application
interface, system interaction, | composition, human/computer
low-level programming | interactions, system interaction, and
techniques, and low-level | software modules, applications
reusability (rather than | domains, and high-level reusability.
applications).

Contents The syntax of the programming | The service-oriented computing

language, with an emphasis on
the construction of program
modules.

principles and the use of existing
service to compose applications.

Acquiring order

Learn programming language
constructs, followed by
architecture design.

Learn software architecture design
followed by workflows and services.

First
development
essay

Develop application from

scratch.

Develop applications by composition
using existing services in a service-
oriented computing infrastructure.

Comparisons on the ta

rget software characteristics

Overall process

For example, object-oriented

Software development by identifying

design by first identifying data, | loosely coupled services and
classes, or associated methods. | composing them into executable
applications.
Level of | Application development is | Development is delegated to three
abstraction and | software delegated to a single | independent parties: application

cooperation

team responsible for the entire
lifecycle of the application.
Developers need to have
programming knowledge and
some domain knowledge.

builder, service provider, and service
broker.

Builders understand application logic
and may now know how services are

implemented. Providers develop
services but may not know the
applications.

Brokers know and broadcast a large
number of services.

Code sharing | Code reuse through inheritance | Code reuse at service level. Services
and reuse of class members and through | have standard interfaces and are
library functions. Often these | published on repositories on the
are platform dependent. Internet. They are platform-
independent and can be searched and
remotely accessed. Service brokers
enable systematic sharing of

services.
Dynamic Associating a name to a | Binding a service request to a service
binding and | method at runtime. The method | can be done at the design time or at

Student: Bui Hoang birc, K50, Software Engineering A

Page 8

must have been linked to the
executable code before the
application is deployed

decomposition

runtime. The services can be
discovered after the application has
been deployed. This feature allows
an application to be composed (and
re-composed) at runtime.

Application development by
identifying tightly coupled

Methodology

classes. Application
architecture is hierarchical
based on the inheritance

relationships.

Application development by
identifying loosely coupled
services and composing them into
executable applications.

Users need to upgrade their
software regularly. The
application has to be stopped
to perform the upgrading.

System
maintenance

resides on
computers.

The service code
service providers’
Services can be updated without
users’ involvement.

Table 1.1 Comparison of traditional and service-oriented programming

There are 3 basic elements in SOA:
e Service Broker.
e Service Consumer.
e Service Provider.

An execution scheme should be: First, a service provider advertises its service
contract information to service brokers. A service consumer finds needed service
providers by contacting service brokers. After finding necessary providers, the
consumer will use the services from the provider by interacting with it directly.

Figure 1-1 (from [2]) illustrates this scheme.

Service
Broker

Service
Consumer

Interact

Searvice
Contract

Service
Provider

Figure 1-1 Basic elements of SOA

Student: Bui Hoang birc, K50, Software Engineering A

Page 9

There are many technologies for SOA implementation. Some examples are
CORBA, EJB, and Web service. The most popular and flexible technology is the
Web service. Some reasons for the popular of Web service technology are open
standards, interoperability and platform independence.

Definition 1.1 Web Service

A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP-messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-
related standards.

Figure 1-2 (from [3]) illustrates the Web Service architecture with WSDL and
SOAP: A service provider provides its service contract in a WSDL document and
advertises it to a discovery agency using UDDI_save xxx action of UDDI protocol.
A service consumer will find compatible service using UDDI_find_xxx action of
UDDI protocol. After finding needed web services, the consumer will interact with
the web service by XML documents over SOAP protocol.

Discovery
Agency

Find

oI _find =xz

Publish

UDDI_save XXX

Service
Provider

Service
Consumer

Figure 1-2 Web service triangle architecture

Web services are accessed using open standard text-based protocols such as
Hypertext Transfer Protocol (HTTP) and XML. SOAP is a simple XML-based
protocol to let applications exchange information over HTTP. Specification of
SOAP can be found at [4]

Student: Bui Hoang birc, K50, Software Engineering A Page 10

1.2. Web Service Composition and BPEL

A web service can be created by either developing from scratch or composing other
existing web services following some coordination plan. “A coordination plan
represents the coordinated execution of services.” [1]

There are 3 main approaches for composition of services: Orchestration,
Choreography and Collaboration.

In orchestration, web services are controlled by a central coordinator following a
business process. Each web service taking part in the process does not need to know
about its role in the process. In choreography, each involved web service knows the
time it operates and which service it interacts with. Figure 1-3 and Figure 1-4
illustrate that approach of web service composition.

Web service Web service
il 2

1: Receive 2: Invoke
5: Reply Orchestration
(co-ordinator) 4: .. n: Invoke

St

Web service 3: Invoke Web service

3 n

Figure 1-3 Web service composition in orchestration style

The third type of web service composition is collaboration. In this style, web
services involving in a business process partly knows its role in the process but are
still controlled by a central coordinator. This kind is a hybrid of the orchestration
and choreography styles. However, this style has not been fully developed and
supported by software vendors. [1]

Web service
1
5: Invoke :L:Q)‘ke
Web service Web service
4 2
3: Replkv
4: Invoke i 2: Invoke
Web service
3

Figure 1-4 Web service composition in choreography style

Student: Bui Hoang birc, K50, Software Engineering A Page 11

In those approaches, the orchestration approach with the BPEL language is the most
popular in today’s real-life applications. Many major vendors such as Oracle, IBM
and SAP produce BPEL engines such as Oracle BPEL Process Manager, IBM
Process Manager [5]

Business Process Execution Language (BPEL) is an XML language for the
composition of web services. The program written in BPEL is exposed as a Web
service to the outside world. The involved web services are controlled by a central
engine.

Every BPEL process is specified in an XML document, commonly with “.bpel”
extension.

Figure 1-5 shows main parts of a BPEL documents: extensions, imports,
partnerLinks, messageExchanges, variables, correlationSets, faultHandlers,
eventHandlers and activity.

A BPEL process consists of activities. There are 2 types of activities: basic
activities and structured activities. [6]

There are 11 basic activities: invoke, receive, reply, assign, throw, rethrow

wait, empty, exit, validate and extensionActivity

There are 7 structured activities: sequence, 1if, while, repeatUntil, pick,

flow and forEach.

Basic activity Brief explanation

<invoke> Call an operation of a web service specified in a partner link
and receive feedback from it.

<receive> Receive data from a web service specified in a partner link.

<reply> Send a response to a request previously accepted through an
inbound message activity such as the <receive> activity.

<assign> Copy data from one variable to another, to construct and

insert new data using expressions and to copy endpoint
references to and from partnerLinks.

<throw> Signal an internal fault explicitly.

<rethrow> Propagate faults, used in fault handlers to rethrow the fault
they caught.

<wait> Specifies a delay for a certain period of time or until a
certain deadline is reached.

<empty> Does nothing.

<exit> Immediately end the business process instance.

Student: Bui Hoang birc, K50, Software Engineering A Page 12

<validate> Validate the values of variables against their associated
XML and WSDL data definition.

<extensionActivity> | Extend WS-BPEL by introducing a new activity type.

Table 1.2 Basic activities descriptions

Structured Brief explanation

activity

<sequence> Define a collection of activities to be performed sequentially in
lexical order.

<if> Select exactly one activity for execution from a set of choices.

<while> Define that the child activity is to be repeated as long as the

specified <condition> is true.

<repeatUntil> | Define that the child activity is to be repeated until the specified
<condition> becomes true.

<pick> Wait for one of several possible messages to arrive or for a
timeout to occur.

<flow> Specify one or more activities to be performed concurrently.

<forEach> Iterates its child scope activity exactly N+1 times where N
equals the <finalCounterValue> minus the

<startCounterValue>.

Table 1.3 Structured activities descriptions

Partner links

Partner links in BPEL model services with that the business process interacts. Each
partner link belongs to a partner link type. Each partner link type defines roles for
the process and the interacting service. Each role contains a port type and each port
type defines some operations. Thus, the actions of sending and receiving data to and
from other web services are performed over partner link. Each partner link can be
considered as a contract between the business process and an outside service.

Accessing variable with XPath expressions

The query and expression language used in BPEL is specified by the queryLanguage
and expressionLanguage attributes of process element. BPEL specification uses
XPath 1.0 as the default query and expression language and the default value for the
above attributes iS urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0

“An enclosing element is defined as the parent element in the WS-BPEL process
definition that contains the Query or Expression.” [6].

The expressions written in Query/Expression language should be only able to access
the objects in the scope of the Enclosing Element’s enclosing activity.

Student: Bui Hoang birc, K50, Software Engineering A Page 13

The result of the evaluation of a WS-BPEL expression or query will be one of the
following:

e Asingle XML infoset item

e A collection of XML infoset items

e A sequence of Character Information Items for simple type data
e A variable reference

fprocess name="myProcess” N
[extensions Declares extension namespaces &
WS-BPEL processor requirements
imports Declares a dependency on external
XML Schema or WSDL definitions
partnerLinks Defines the different parties that
interact with the process
messageExchanges Disambiguate Inbound Message
Global < Activities and <reply> activity
Declarations variables Defines the data variables used by
the process
correlationSets Properties that enable long-running
asynchronous conversations
faultHandlers Defines the activities that must be
performed in response to faults
\ eventHandlers invoked concurrently when specific
events occur
activity :
Definition \ / business process

Figure 1-5 BPEL document structure

To access BPEL variables, we will use XPath variable bindings. For variables
declared using an element, we can access the variable using XPath as an XML
document with the document element be the element type of the variable. For
variables declared using a complex type, we can access it as a node-set XPath
variable with one member node containing the anonymous document element that
contains the actual value of the variable. The XPath variable binds to the document
element. For WS-BPEL messageType Variable will be expressed as a series of
variables, each of which corresponds to a part in the messageType. To access to a
part, because WSDL message parts are always defined using either an XSD
element, an XSD complex type or a XSD simple type, we will use the part name
followed by a dot “.” and the variable name, then access each part as a “normal”
element. Simple type variables are accessed directly as either an XPath string,
boolean or float object. xsd:boolean variable are manifested as an XPath boolean
object; xsd:float, xsd:int and xsd:unsignedint are manifested as an XPath float
object; other XML Schema types must be manifested as an XPath string object.

Student: Bui Hoang birc, K50, Software Engineering A Page 14

Synchronization dependencies

In <flow> activity, synchronization dependencies can be specified by <1inks>
between inner activities. Each link is a tri-stated flag which can hold one of the 3
values: true, false or unset. Each link points from an activity which is the source of
the link into another activity which is the target of the link.

Each inner activity is ready to start whenever the flow activity starts. However, if
the activity is the targets of one or more links, it will not be executed until the
joinCondition Which specifies a logical expression attribute is evaluated to true.
If the joincondition IS omitted, it logical expression is the OR-logic of all
incoming links i.e. the activity will be executed if at least one incoming link is true.
If the joinCondition is evaluated to false, a fault will be thrown unless the
suppressJoinCondition attribute is yes. The default value of suppressJoinCondition
is yes. The thrown fault will be handled by a fault handler.

1.3. Formal Methods and Model Checking

Formal methods in software engineering can be defined as follows:

Definition 1.1 Formal methods [7]

Formal methods used in developing computer systems are mathematically based
techniques for describing system properties. Such formal methods provide frameworks
within which people can specify, develop, and verify systems in a systematic, rather than
ad hoc manner.

A method is formal if it has a sound mathematical basis, typically given by a formal
specification language.

According to [7], traditional approaches have some deficiencies such as:
contradictions, ambiguities, vagueness, incompleteness and mixed levels of
abstraction. The use of mathematics in software development can solve those
problems. The formal syntax of a specification language such as notations of set or
logic theory makes requirements to be interpreted in one way, so it eliminates
ambiguity of natural languages. A system specification specified in a formal
specification language can be checked automatically by software to find
contradictions. We also are able to prove statements like theorems or system’s
properties mathematically. Therefore, consistency is ensured and correctness can be
verified.

A disadvantage of formal methods is that they require trained staff that is able to
work with mathematically notations, so development cost may increase. Formal
methods do not replace all traditional development approaches. We also should
include documents in natural language next to the formally specified system

Student: Bui Hoang birc, K50, Software Engineering A Page 15

requirements to help readers comprehend the system. Software testing and software
quality assurance must continue to ensure the quality of the results.

Simulation, testing, deductive verification, and model checking are the principal
validation for complex systems [8]. Simulation is performed on an abstraction or a
model of the system while testing is conducted on a real instance of the system.
Deductive verification refers to techniques of proving the correctness of systems
using axioms and proof rules. Model checking uses an exhaustive search of the state
space of the system to verify that if some specification is true or not. One benefit of
model checking over deductive verification is that it can be performed
automatically.

Applying model checking to a design consists of several tasks [8]:

e Modeling: System design must be expressed in a formal language that is
accepted by a model checking tool. One of the challenges of model checking is
to construct a model that is practical to verify but sufficient and faithful to
represent the verified program [9].

e Specification: Properties that the design must satisfy must be stated. It is
common to use temporal logic that can assert the state of the system over time.
A significant issue in specification is completeness because we cannot determine
whether the given specification covers all the properties that the system should
satisfy.

e Verification: The result of a verification process is whether the properties in
specification are held by the model. In case of a negative result, an error trace
will be provided. Users will analyze this trace to find out the cause which may
be in the original design, in modeling process or incorrect specification.

1.4. The Spin Model Checker

1.4.1. Introduction
Spin is a very popular model checker. It verifies properties of a system using model
checking method. Systems to be verified are described in Promela (Process Meta
Language), which supports modeling of asynchronous distributed algorithms as
non-deterministic automata.

To verify properties of a system, users use assertions or Linear Temporal Logic
(LTL) formulae. An assertion is a statement consisting of the keyword assert
followed by an expression. LTL formulae are more general than assertions. It adds
to the propositional calculus temporal operators: always [], eventually <> and until
U; so LTL formulae express propositions with time factor. Spin will check if the
properties. In simulation mode, if an assertion is evaluated to false, the program will
terminate and Spin will show an error message. In verification mode, Spin will

Student: Bui Hoang birc, K50, Software Engineering A Page 16

show whether LTL formulae or assertions are violated and the depth that the
violation happens. A trail of the computation is also recorded.

In addition to model-checking, SPIN can also operate as a simulator, following one
possible execution path through the system and presenting the resulting execution
trace to the user. There are 3 modes of simulation: random, guided by a trail file and
interactive with users.

¢ In interactive simulation mode, users have to choose one of the statements to
execute.

¢ In random simulation mode, Spin will choose which statements to execute, i.e.
run in a random path. With only a filename as an argument and no option flags,
Spin performs a random simulation of the model specified in the text file.

e In guided simulation mode, Spin will use a trail file that contains an encoded
sequence of transitions to decide which statements will be executed and by
default has the name of the model file with trail extension. This mode is useful
particularly when the verification process fails and we want to find out exactly
what happened.

Users can specify the level of output detail in the arguments of the spin.
In order to verify a Promela model, we perform 3 steps:

- Generate a verifier which is a C program in file pan.c from the Promela
model.

- Compile the verifier using a C compiler with POSIX compliant C library.

- Run the executable verifier. The result is a report that there is no error found
or else that some computation contains an error.

One of the goals of a model checker is to support system engineer to find where an
error happens. Spin does it by maintaining data structures that are used to
reconstruct a computation that leads to an error. The data is saved into a trail file
and users can use it in guided simulation mode of Spin to analyze the cause of the
error.

1.4.2. Underlying models and verification process
Spin model checker searches through state space of a model for a counterexample to
the correctness specifications, following model checking method. “The state space
of a program is the set of states that can possibly occur during a computation.” [9].
The set of values of variables and location counters makes a state of a program. A
computation is a sequence of states that begins with an initial state and continues

Student: Bui Hoang birc, K50, Software Engineering A Page 17

with the states that occur when each statement is executed. The correctness
specifications can be expressed in assertions or linear time logic formulae.

Automata theory
Formally, Spin considers state space as a Blchi automaton. Automata theory is
essential to understand properties such as safety and liveness and what actually Spin
is built on. With that thought in mind, in this section, | provide formal definitions of
finite-state automata and Biichi automaton.
I will use some convention symbols:

e Pow(Q) is the set of all subsets of Q.

e Inf(r) = {re X | VieN, 3j>ieN, rj=r} is the set of symbols that occur

infinitely often inrr.

Definition 1.1 Finite State Automaton [10]

An automaton is a 5-tuple (Q, X, 0, qo, F), where Q is a finite set of states, X is a finite
input alphabet, qo in Q is the initial state, F < Q is the set of final states, and 0 is the
transition function mapping Q x X to Q. That is d(q, a) is a state for each state q and input
symbol a.

Definition 1.2 o-Language

A w-language is a subset of all words of infinite length over an alphabet X: A € 2°

Here, we may interpret o as repeating infinitely often.
Definition 1.3 Finite ®-automaton

A finite w-automaton M is a 5-tuple M= (Q, %, o, qo, F), where:
1. Q is a finite set of states.

2. X is a finite alphabet.

3. 0: transition function

4. qo€ Q is the initial state.

5. F €Q is the set of final states

Definition 1.4 Determinism and non-determinism

Let M= (Q, Z, 0, qo, AccC) be a finite state automaton
M is non-deterministic if and only if: 6 : Q x X 2 Pow(Q)
M is non-deterministic if and only if: 6 : Qx 2 2 Q

Definition 1.5 Run

Let M= (Q, X, 6, qo, Acc) be a finite w-automaton, let 0.€ X° A run of M on ay 0z a3, €X°
is an infinite sequence of states r=rq ry r,... € Q” such that

(i) ro=0po
(i) ris1€0(qi air1), ¥i=0, 1, ... - in case of nondeterministic.
liv1= 0(qi, ai+1), Vi=0, 1, ... - in case of deterministic.

Student: Bui Hoang birc, K50, Software Engineering A Page 18

Definition 1.6 Bichi acceptance

We say M accepts a w-word a€ X if and only if there exists a run r of M on a satisfying
Inf(r) /1 F #@i.e. at least one accept state in F has to be visited infinitely often during the
runr.

The Definition 1.2 to Definition 1.6 are based on [11]

Besides the Blichi acceptance, there are other types of acceptance such as Muller,
Rabin and Street acceptance.

So we can ends up with the definition of a Blichi Automaton.

Definition 1.7 Blchi Automaton

A Bichi Automata is a finite state automaton that accepts infinite strings with Biichi
acceptance conditions.

Roughly, a Biichi automaton has a finite number of states and an input that makes it
to perform a run of infinite number of steps can be accepted. The main difference
between a m-automaton and a finite state automaton is that the wm-automaton can
accept an infinite input.

In terms of Biichi automata, safety and liveness of a system (program) can be
defined as:
e Safety: The execution of corresponding Biichi automaton of the program
never reaches any invalid state.
e Liveness: The corresponding Blchi automaton of the program will execute a
run through valid state infinitely often.

Reachability graph and Promela semantics rules

In Spin, the state space or Bichi automaton corresponds to a global reachability
graph. Spin systematically analyze all parts of it to find paths that lead program to
states that are invalid or violate correctness specifications. By default, Spin stops as
soon as one error path is found because the existence of one counterexample is
usually enough to prove the incorrectness of a program.

Promela semantics rules determine the structure of a reachability graph. Each node
in that graph represents a possible state of the model and each edge represents a
single possible execution step by one of the processes in the model. Promela is
deliberately designed to make the generated graph be finite, so in principle, “the
complete graph can always be built and analyzed in a finite amount of time”.

Each Promela proctype corresponds to a finite state automaton (S, so, L, T, F). The
set of states S corresponds to the possible points of control within the proctype.
Transition relation T defines the flow of control. The set of final states F

Student: Bui Hoang birc, K50, Software Engineering A Page 19

corresponds to the set of valid end states in Promela model. The set of labels L is
the set of basic statements in Promela which contains just six elements:
assignments, assertions, print statements, send or receive statements, and Promela’s
expression statement.

Listing 1.1 and Figure 1-6 illustrate a proctype and the corresponding automaton
model. [9]

Listing 1.1 Sample Promela Model

active proctype not euclid(int x, vy)

{
if

b

(
(
(

y) > L: x = X - Yy
y) =>y =y - X
y) -> assert(x!=y); goto L

b
AV

b

fi;
printf (";%d\n", x)

Figure 1-6 Transition relation for the sample model in Listing 1.1

There are 6 basic statements: assert, assign, condition, printf, receive and
send; and the semantics engine executes the system in a stepwise manner: selecting
and executing one basic statement at a time.

Spin uses a semantics engine to simulate the execution of a model. The semantics
rules used in the engine determines the structure of reachability graph. The
semantics engine operates on abstract objects that correspond to elements in
Promela language.

To explain how the semantics engine operate, | extract definitions in [12]

Student: Bui Hoang birc, K50, Software Engineering A Page 20

Definition1.8 Variable

A variable is a tuple (name,scope,domain,inival,curval) Where
name 1S @n identifier that is unique within the given scope,

scope IS either global or local to a specific process.

domain IS @ finite set of integers.

inival, the initial value, is an integer from the given domain, and

curval, the current value, is also an integer from the given domain.

Definition 1.9 Message

A message is an ordered set of variables

Definition 1.10 Message Channel

A channel is atuple (ch id,nsiots,contents) Where

ch_id IS a positive integer that uniquely identifies the channel,

nslots IS an integer, and

contents IS an ordered set of messages with maximum cardinality nsiots.

Definition 1.11 Process

A process is a tuple
(pid,lvars,lstates,initial,curstate,trans)Where

pid IS a positive integer that uniquely identifies the process,
1vars IS @ finite set of local variables, each with a scope

that is restricted to the process with instantiation number pia.
1states IS @ finite set of integers (see below),

initial and curstate are elements of set 1states, and

trans 1S a finite set of transitions on 1states.

Definition1.12 Transition

A transition in process r is defined by a tuple

(tr id,source,target,cond,effect,prty,rv) Where

tr idIiSanon-negative integer,

source and target are elements from set . 1states (i.€., integers),
cond IS @ boolean condition on the global system state,

efrect IS @ function that modifies the global system state,

Student: Bui Hoang birc, K50, Software Engineering A

Page 21

prty and rv are integers.

Definition1.13 System State

A global system state is a tuple of the form
(gvars,procs,chans,exclusive,handshake,timeout,else, stutter) where
gvars IS a finite set of variables with global scope,

procs IS a finite set of processes

chans IS a finite set of message channels,

exclusive, and handshake are integers,

timeout, else, aNd stutter are booleans.

Basically, semantics engine execute in a stepwise manner. It choose one in a set of
executable statements of the model, if there is no handshake (rendezvous), it will
apply the effect of the statement on the model and change the state of the process
that contains the selected statement; otherwise, it will handle the handshake. The
detail of the algorithm is in the chapter 7 of [12].

Search algorithms

In verification mode, after constructing the reachability graph, the Spin will use
graph search algorithms, typically, depth-first search or breath-first search. Each
algorithm has its own drawback but in typical application, the depth-first search is
the most effective choice and is chosen by default.

| will not describe the depth-first and breath-first search algorithms applied in Spin
model here because they are like basic algorithms. If you want to know more about
them, please refer to [12].

It’s proved that the depth-first search algorithm on Spin models always terminates
within a finite number of steps.

Because the search algorithms visit every reachable state, so we can use them to
check safety property quite simply by embed a checking instruction into the
algorithm. It can identify all possible deadlocks and assertion violations. The main
issue is what operations that the algorithm should perform when a violated state
property is found. The Spin implementation saves the execution trace from the
initial state the violated states. Though the depth-first algorithm need not to find the
shortest possible counterexamples, it is sufficient for engineers to look at last few
steps in the execution sequence to find out the nature of a property violation.

Student: Bui Hoang birc, K50, Software Engineering A Page 22

The basic depth-first algorithm can be extended to check the liveness properties that
are expressed in linear temporal logic. It is proved that an acceptance cycle in the
graph exists if and only if there exists one reachable accepting state from the initial
state and one of the accepting states is reachable from itself [12]. To check the
liveness property, the Spin verifier first finds a reachable accepting state and then
finds a cycle that contains that state.

1.5. Promela Language

Input models of the Spin model checker are described in Promela language.
Promela is a language for system modeling so it is like other programming
languages (e.g. C and Pascal) but has some components that exist in others and also
lack of some familiar components.

Promela grammar rules are described formally in [13]. Those rules will be used in
this thesis to construct Promela code generator.

According to [9], the main elements in a Promela program are as follows:
1. Built-in data types

There are data types in Promela. They can be grouped into numerical data types
(bit, bool, byte, short, int, unsigned), channel data type (chan), user-defined data
types (mtype, typedef), 1-dimensional array data type.

The value range of numerical data types is shown in Table 1.4

Type Values Size (bits)
bit, bool 0, 1, false, true 1

byte 0.. 255 8

short -32768.. 32767 16

int -231.. 231-1 32
unsigned 0_,2”’1 <32

Table 1.4 Numerical data types in Promela

The bit and bool data types are equivalent data types and are intended to make
programs more readable.

Promela does not have some familiar data types such as character, string, floating-
point data types. Floating-point numbers are not needed because the exact values
are not important in models. However, we can use them in embedded segments of C
code.

All variables are initialized by default to zero.

Student: Bui Hoang birc, K50, Software Engineering A Page 23

There is no explicit data type conversion in Promela. Arithmetic operations are
always performed by first implicitly converting all values to int; upon assignment,
the value is implicitly converted to the type of the variable. When the value is larger
than the range of the assigned variable, a truncation will occur and an error message
will be printed but the program may continue because PIN leaves it up to user to
decide whether the truncated value is meaningful or not.

_pid variable indicates the id of the process that contains that variable. piqd of a
process begins from 0.

The following operators and functions can be used to build expressions:

+ - / % >

>= < <= == I= !

& [&& | ~ >>

<< A ++ --

len () empty () nempty () nfull () full()
run eval () enabled() pc_value ()

2. User-defined types

A user-defined structured data type can be created by using the following syntax:

typedef structured data type name{
subfieldl type subfieldl name;
subfield2 type subfield2 name;

}
To declare a structured variable we use the syntax: structured data type name
variable_name;

In order to access to a subfield of the variable, we write variable’s name and
subfield’s name, separated by a dot: variable name.subfield1.

A typedef type must be prior to any use of that type; otherwise, a syntax error will
occur.

3. Control statements

There are five control statements: sequence, selection, repetition, jump and unless.
The semicolon is the separator between statements rather than a command
terminator.

In order to understand the Promela semantics, I’d like to explain the concept of
control point. A control point is an address of an instruction. For examples, in the
following sequence of statements:

int x=1;

int y=2;
Z=X+Yy

Student: Bui Hoang birc, K50, Software Engineering A Page 24

there are 3 control points, one before each statement, and the program counter (pc)
that indicates the current execution point of the program can be at any one of them.

The syntax of if-statement is as following:

if

:: guardl> stmntl; stmnt2

:: guard2 = stmnt3; stmntd; ..
:: else 2.

fi

An if-statement starts with the key word if and ends with the reserved fi. Between
the key words, there are one or more alternative or option sequence, each consisting

a double colon “;” and a sequence of statements in which the first statement is
called guard.

If there is only one guard is evaluated to true then the followed statements will be
executed. If there is more than one guard being true, then one of those alternatives
will be selected randomly as the program is converted into a non-deterministic
omega-automaton by SPIN. The else guard will be selected if and only if all other
guards are evaluated to false. In the case that all guards are false, the if-statement is
blocked until there exists one guard become true.

The sequence of statements following a guard can be empty. SPIN provides user the
skip keyword that always evaluates to true like true or (1).

The if-statement is not atomic, so interleaving is possible between the guard and the
followed sequence of statements.

€6,

The arrow in an option sequence has the same meaning with the semi colon *“;” as a
statement separator and is intended to emphasize the role of the guard.

The Figure illustrates the semantics of an if-statement.

Student: Bui Hoang birc, K50, Software Engineering A Page 25

option
SEQUENCEe

option
sequence

option
sequence

next
statment

Figure 1-7 State diagram of if-statement

4. Repetitive statements

Do-statement is the only one repetitive statement in Promela. The syntax of the do-
statement is almost the same as that of the if-statement:
do
: guardl—> stmntl; stmnt2; break
:: guard2 > stmnt3; stmnt4; ..
. O

:: else 2.
od

If there is only one guard evaluating to true, the followed sequence of statements is
executed. If there are two or more true guards, SPIN will choose one of them
randomly and run the followed option sequence. If there is no guard being true then
the do-statement is block until there is at least one guard become true.

After the option sequence is executed, the program counter will move to the point
right before the do keyword. In order to exit from the do-statement, we will use the
break keyword, which is not a statement but an indication that the program counter
will move from current location to the statement following the od.

5. Jump statements

Student: Bui Hoang birc, K50, Software Engineering A Page 26

Users can use goto-statement to move the program counter to any label that is an
identifier followed by a colon and points to a control point. There is no control point
in front of an alternative in an if- and do-statement but before if or do keyword.

6. Array
Users can define an one-dimensional array by using the syntax:
Element_data type array_name[number_of_elements]

An array is indexed from 0 to (number_of elements-1). An error will occur in
simulation and verification process if the index is out of an array’s bounds.

7. The preprocessor

SPIN calls a text-based preprocessor before processing the Promela source file.
Text-based means that the processor treats source code as pure text without taking
into account any language-related element.

By using preprocessor, we can include a file: #include “some file.h” and to declare
a symbolic constant: #define CONSTANT 4;

#define is also used to declare expressions which are used in the correctness
specification: #define accepted (approval.accept==true)

Promela provides users means to define reusable segment of codes by using Inline
construct. The inline construct and macros are almost identical.

8. Channels

Channels in Promela are a structure that is not associated with processes. A process
can send and receive information to and from a channel. A channel is declared by
using an initializer that contains the channel capacity and the types of fields in
messages.

chan channel name = [capacity] of { typename, .., typename }

The capacity must be a non-negative integer constant. The message type can be
considered as a structure of fields: The type of each field is declared as a typename
and the number of fields is the number of type names. An array cannot be a message
field but we can include the array into a structure (typedef) and use it as a field in
the message type.

All channel variables have the type chan and must be initialized before using. A
channel variable refers to a channel that is created by an initializer, so it can appear
in assignment statements or parameters to a proctype or inline.

Student: Bui Hoang birc, K50, Software Engineering A Page 27

After some experiments, | concluded that messages are transferred via channels as a
structure of numerical types: Structured variables in a sent message will be
decomposed into numerical fields, if there is no value for the field, it will be
assigned to zero; and numerical values in received message will be composed into
structures and assigned into received variables according to the channel’s
declaration.

If the capacity is zero, we have rendezvous or synchronous channels; if the capacity
is more than zero, we have buffered channels.

To send and receive a message to and from a channel, we use the following syntax:

channel name!expression, expression,.. (send statement)
channel name?variable, variable, .. (receive statement)

The number and types of expressions in the send statement, i.e. the structure of the
sending message, should match those in the channel’s declaration. If the expressions
in send statement are variables, they will be evaluated first and their values will be
transferred through the channel. In the receive statement, the received values are
assign into the listed variables. A receive statement will be block until a message in
available on the channel.

If the number and types of expression in send and receive statement are not match
with the channel’s declaration, an unexpected result will occur.

A buffered channel contains a queue whose size is the capacity of the channel. The
send statement is executable if and only if the buffer is not full. The execution of the
statement will put a message into the tail of the buffer. The receive statement is
executable if and only if the buffer is not empty. The execution of the statement will
remove a message at the head of the buffer and assign its value to the variable in the
receive command.

In my algorithms, | used mostly rendezvous channels so | will explain more about
them. A rendezvous channel has a buffer with size of 0. Data transfer on rendezvous
channels is synchronous and is executed as a single atomic operation. Suppose that
there are one sender (process that contains a send operation) and one receiver
(process that contains a receive operation) sharing a rendezvous channel. When the
location pointer (process pointer) of the sender is at the send statement, the sender is
said to offer a rendezvous. If there is no matching receive statement, the send
statement will be blocked, and the same situation happens with receive statement
with no matching send statement. When both location pointers of the sender and
receiver are at matching send and receive operations, the rendezvous that is offered
by the sender is accepted by the receiver: the location pointers of both processes

Student: Bui Hoang birc, K50, Software Engineering A Page 28

move to next statements and the values in the send statement are transferred to the
corresponding variables in the receive statement. There is no operation that could
happen between the execution of the send statement and the receive statement.

CHAPTER SUMMARY

In this chapter, | have presented key concepts needed for the following chapters:
Service-oriented architecture, web service, web service composition; main
components of Business Process Execution Language and Promela language; the
Spin model checker — its features and underlying models.

Student: Bui Hoang birc, K50, Software Engineering A Page 29

Chapter 2. BPEL PROCESSES VERIFICATION PROBLEM
AND PROPOSED SOLUTION

In this chapter:
Description of the problem of verifying BPEL processes.
Overview of the current approaches done by researchers and professors on

the world.
Proposed solution architecture for the problem.
Algorithms in the architecture.

2.1. BPEL Processes Verification Problem and Current Research
Trends

The general problem of verifying BPEL processes can be described in detail as
following:

- LetBisaBPEL process which is written in BPEL language.

- Let P is a property specified on the process B.

- Check whether B satisfies the property P; if no, provide a path to the state
that does not satisfy the property P

Some common properties are:

(1) General properties such as: Safety (the corresponding Blichi automaton does
not move to invalid state) or Liveness (the execution of the corresponding
Buchi automaton visit final states infinitely often).

(2) Particular properties such as: For an arbitrary loan request, does there exist
two cases in which the request is approved in one case and the request is
refused in the other case? In model checking method, properties of this type
are described in Linear Temporal Logic formulae.

Researches about model checking of BPEL processes have been conducted in
different approaches by researchers around the world. Table 2.1 gives us an
overview of current search approaches.

In the table, the symbol “=” can be read as “is transformed to” or “is translated to”.
Basing on [14] and Table 2.1, common approaches are:

e Using Petri net theory: A BPEL process is translated into a Petri net (that
includes workflow net and colored Petri net) and then perform verification
on it.

Student: Bui Hoang birc, K50, Software Engineering A Page 30

e Using model checker:

o A BPEL process is translated into a guarded automaton, extended
finite-state automaton or a finite state machine; and the automaton is
then translated into an input program for a model checkers such as
SMV [15] and NuSMV [16].

e Using process algebra: a BPEL process is translated into a process algebra
structure, calculus for communication systems, LOTOS or pi-calculus.

e Using abstract state machine theory: a BPEL process is translated into an
abstract state machine.

e Using automaton theory: BPEL processes are transformed into annotated
deterministic finite automata.

Student: Bui Hoang birc, K50, Software Engineering A Page 31

Country Methodology Description
No. | Name Author Institution Year | Published in
United Proceedings of the 18th IEEE | BPEL is transform to Finite State Process (a kind of
Howard Foster, Kingdom International Conference on | process algebra) that can be verified
Sebastian Uchitel, Automated Software
Model-based Verification of | Jeff Magee and Jeff | Department of Computing, Imperial Engineering
1 | Web service Compositions[17] Kramer College London. 2003 | Conference(ASE)
2 Italia Using Process Algebra to describe and compose web
services at an abstract level.
Describing and Reasoning on | G.Salaun, Proceedings of IEEE
Web Services using Process | L.Bordeaux and International Conference on
Algebra [18] M.Schaerf University of Roma 2004 | Web Services
3 United BPEL->Guarded Automaton—>Promela
States Message types are extracted from WSDL files
Handle XML based data manipulation using guarded
automata with guards expressed as XPath
expressions.
Each guarded automaton = one Promela process
Xiang FU, Tevfik | Department of Computer Science. Proceedings of the 13th | Message type> an MSL type declaration >typedef
Analysis of Interacting BPEL | Bultan and Janwen | University of California. Santa International World Wide Web | in Promela
Web Services [19] Su Barbara 2004 | Conference Strings: used as constants > mtype
4 United Tackling 2 challenges: 1)asynchronous messaging 2)
States rich data representation(XML) and data manipulation
Model Checking Interactions | Xiang FU, Tevfik ucsB (XPath)
of Composite Web Services | Bultan and Janwen | Department of Computer Science. Computer Science Department | Handling data using Model Schema Language
[20] Su University of California. 2005 | Technical Report 2004-2005 BPEL->Guarded Automaton—>Promela
5 German Proceedings of Transforming BPEL to Petri nets which is used in
the 3rd International | LolA, a petri net model checking tool
Conference on Business
Transforming BPEL to Petri | S. Hinz, K. Schmidt, | Humboldt-University of Berlin Process Management
nets [21] and C. Stahl Institute of Informatik 2005
6 Verifying Web Services China ACM workshop on | Transforming a web service composition specification
Composition Based on | YanPing Yang, Interoperability of | into a hierarchical colored Petri net which is the input
Hierarchical Colored Petri | QingPing Tan and | National University of Defense Heterogeneous Information | of a colored Petri-nets analysis tool such as CPN
Nets [22] Yong Xiao Technology Changsha, Hunan 2005 | Systems (IHIS'05) tools.
7 Japan Extracting behavioral specification from BPEL
application program, then representing it in Extended
Finite Automaton (EFA), then translating the EFA into
PROMELA which is the input modeling language of
Model-Checking Behavioral National Institute of Informatics and Electronic Notes in Theoretical | the Spin model checker
Specification of BPEL SORST Japan Science and Computer Science 151 (2006)
Applications [23] Shin NAKAJIMA Technology Agency 2006 | 89-105 Focus on behavioral aspect of a process

Student: Bui Hoang Dirc, K50, Software Engineering A

Page 32

8 United Proceedings of the LTSA-WS is an extension of the Labeled Transition
LTSA-WS: a tool for model- | Howard Foster, Kingdom 28th International Conference | System Analyzer (LTSA) that can used to verify
based verification of web | Sebastian Uchitel, on Software Engineering, pages | properties of composite web services
service compositions in Eclipse | Jeff Magee and Jeff | Department of Computing, Imperial 771-774, Shanghai,

[24] Kramer College London. 2006 | China.
9 Key Laboratory of High Confidence China composition specification > behavior model that
Software Technologies, Ministry of uses the notation of UML sequence with formal
Towards automatic | Xiangping Chen, | Education. School of Electronics semantics > Promela
verification of web-based SOA | Gang Huang and | Engineering and Computer Science,
applications [25] Hong Mei Peking University. Beijing, China. 2008 | Asia-Pacific Web Conference

10 AL-GAHTANI Ali, Saudi IEEE International Conference | transform BPEL to Promela directly, developed on
A Methodology and a Tool for | AL-MUHAISEN Department of Information and | Arabia on Information & Computer | .NET framework
Model-based Verification and | Badr and | Computer Science Science, King Fahd University of
Simulation of Web Services | DEKDOUK King Fahd University of Petroleum Petroleum and Minerals
Compositions [26] Abdelkader and Minerals 2004

Table 2.1 Current research trends

Student: Bui Hoang Dirc, K50, Software Engineering A

Page 33

2.2. Proposed Solution Architecture

According to the previous section, an approach to verify a BPEL process is to
leverage a model checker, i.e. translating the BPEL process into an input program to
a model checker over an intermediate representation.

Here, there is some equivalence: the verification of a BPEL process is equivalent to
the creation of a model of the process; the modeling process problem is then
equivalent to the translation of a BPEL document to a Promela program.

In this thesis, | propose a solution, in which I transform BPEL processes into
Labeled Control Flow Graph and then to Promela programs. The output
Promela program will be the input to the Spin model checker. This is illustrated in
Figure 2-1.

There are some reasons of choosing LCFG as intermediate form. It’s necessary to
preserve control flow is an essential part of BPEL processes into Promela programs.
In my algorithms, | decode control flow of a BPEL process into a LCFG and encode
it in into a Promela program. The second reason is that although it’s quite redundant
to bind BPEL element meta-object to LCFG and then extract it, designing algorithm
basing on the control flow graph is easier and more effective than working on the
tree structure of BPEL documents because LCFG represent the control flow of
activities better.

Compared to other model checking tools like NuSMV, Spin is specialized for
modeling distributed system which is very appropriate for BPEL because BPEL
defines compositions of distributed web services.

Although LCFG is simpler than other formal models such as abstract state machine
or automata used by researchers in the world, my solution is as effective as the other
solutions.

Student: Bui Hoang birc, K50, Software Engineering A Page 34

<process name="loanApprovalProcess"
targetlamespace="http://example.com/loan-approval/"

="http://docs.oasis-open.org/wsbpel/2.0/process/executable”

"http: //example.com/loan-approval /wsdl/"

="yes">

suppressJoinFail

<import importType="http://schemas.xmlscap.org/wsdl/"
locatim

'loanServicePT.wsdl"
namespace="http://example.com/loan-approval fwsdl/" />

<partnerLinks>
<partnerlink name="customer"
Type="lns:loanPartnerLT"
loanService" />
<partnerLink name="approver"
Type="lns:loanApprovallT"
approver" />
<partnerlink name="assessor"
par Type="lns:riskAssessmentLT"
par

rRole="assessor" />
</partnerLinks>

<variables>
<variable name='"request"
messageType="1ns:credi tInformationMessage" />

BPEL process

94101 1adg woy _—
uoljewuojsuelj

__/__/\\

i
4

ejowo.ld 01 9477 WoJj

uonewuJojsuelj

mtype = { Lfalse }
mtype = { Ltrue }
moype = { regquest }
mtype = { check }
meype = { low }
mtype = { yes }
mtype = { approve }
mtype = { other }

typedef creditInformationMessage {
byte amount

}

typedef riskAssessmentMessage {
meype level

typedef approvalMessage {
mtype acecept
]

Ghan customerPL IN = [0] of {mtype, creditInformationMessage}
chan customerPL_OUT = [0] of {mtype, approvallessage}

chan approverPL IN = [0] of {approvalMessage, mtype}

chan approverPL_OUT = [0] of {mtype, creditInformationMessage}
chan assessorPL_IN = [0] of {riskhssessmentMessags, mtype}
chan assessorPL_OUT = [0] of {mtype, creditInformationMessage}
creditInformationMessage request VAR

riskhssessmentMessage risk

approvalMessams armrawal

= === | Promela program
mtype assess

mtype setMessage_to_reply
mtype assess_to_approval

mtype receiv
mtype receiv

proctype loanApprovalProcess () {
run TRer=: t
o
-

Verified by Spin

(Spin Version 5.2.4 -- 2 December 2009)

+ Partial Order Reduction

1111 etatoensce search for:

Verification result

im — (none specified)
violations +
zks - (disabled by -DSAFETY)

1tnvaria =nd states +

State-vector 100 byte, depth reached 306, errcrs: 0
68104 states, stored
26369 states, matched
94473 transitions (= stored+matched)
1024 atomic steps
hash conflicts: 909 (resolwed)

Figure 2-1 Transformation process from BPEL to Promela and verification result

Student: Bui Hoang Ptrc, K50, Software Engineering A

Page 35

2.2.1. Labeled Control Flow Graph
Definition2.14 Labeled Control Flow Graph (LCFG)

A labeled control flow graph is a directed graph that is a tuple (V, E), in which
V is a set of vertices and E is a set of edges that represent exchanges between
vertices.

In set V, there is only one Start and Stop nodes. Other nodes represent activities in
BPEL process. These nodes are labeled to describe important information of
activities. Edges in set E represent the order of execution of vertices. We can see
that Control Flow Graphs are subset of LCFGs because LCFGs allow us to
represent concurrent activities.

Figure 2-2 shows elements in a LCFG.

Start and End nodes denote the starts and ends of structured activities. Conditions
are denoted by ThooleanExpr nodes and basic activities are denoted by a simple
node.

-

- S—
Start Condition
- Transition
Stop Description Fork and Join edge

Figure 2-2 Elements in a LCFG
2.3. Proposed Algorithms

2.3.1. Algorithm of transforming from BPEL documents to labeled
flow control graphs
In order to transform BPEL documents to a LCFG, | basically create mapping rules
from each activity in BPEL language to a graph construct in LCFG.

Generally, basic activities in BPEL are directly to LCFG vertices while structured
activities which contain other activities are mapped to a set of vertices.

| construct a LCFG graph of a process by converting the activities of a process into
a graph recursively with function cvtstract which converts a structured activity
into a LCFG. When call cvtstract on the outermost activity of a process, it will
convert all inner structured activities that includes all basic activities into a LCFG.

Student: Bui Hoang birc, K50, Software Engineering A Page 36

The function currently supports 5 structured activities: sequence, flow, If, While
and repeatuntil. The description of cvtstract for each activity and construction
of a LCFG from a BPEL process are written in Table 2.2.

BPEL
structured
activities

Example for mapped LCFG construct and mapping algorithm

<if>

</if>

TAssign
- - S—
- Sequenice.End
Sequence.End g

CREATE graph G
CREATE and ADD a If.Start node into G
ADD condition of If to the graph
CONVERT (if needed) and ADD the inner activity into the graph
APPEND If.End node into graph.
PARSING all elseif elements
APPEND condition of each elseif into G
APPEND each activity in elseif element into the graph
CREATE an edge from the inner activity to If.End
APPEND converted activity in else into G
ADD an edge from the else activity with If.End

Student: Bui Hoang birc, K50, Software Engineering A Page 37

<flow> b

Flow.start

e =
< > -
/flow S J\\\\

CREATE a graph G
CREATE and ADD a Flow.Start node into G
CREATE and ADD a Flow.End node into G
FOR EACH inner activity A
CONVERT A into a subgraph sG if needed
ADD inner activity A into G
ADD an edge from the activity A and Flow.End

<repeatU CREATE a graph G

ntil> CREATE and ADD a RepeatUntil.Start node into G
CONVERT inner activity if needed

</repeat APPEND the inner activity A into G

Until>

APPEND the condition into G
ADD an edge from the condition and A
ADD RepeatUntil.End into G

ADD an edge from the condition and RepeatUntil.End

Student: Bui Hoang Dtec, K50, Software EngineeringA ~ Page 38 Hoang Pirc, K50, Software Engineering A Page 38

<sequenc IF sequence is not empty
e> CREATE a graph G
ceo CREATE and ADD a Sequence.Start node into G
</sequen FOR inner activity Ai and its previous
ce> activity Ai-1
IF Ai and Ai-1 are structured THEN
CONVERT Ai into a graph and APPEND it to G
ELSE IF Ai is structured but neither is
Ai THEN CONVERT Ai into a graph sG and APPEND sG to
G right after vertex Ai-1
ELSE IF Ai is not structured and Ai-1
is basic THEN APPEND Ai into G
ELSE APPEND Ai into G right after
vertex of Ai-1
CREATE and ADD an Sequence.End node into sG
<while>
</while>

Student: Bui Hoang birc, K50, Software Engineering A Page 39

CREATE a graph G

CREATE and ADD a While.Start node into G

CREATE and ADD a condition node into G right after the
start node

IF inner activity is structured

APPEND the converted subgraph from the inner

activity into G

ELSE APPEND the inner basic node into G

CREATE and ADD a While.End node into G right after the
condition node

<process CREATE a graph G

> CREATE and ADD a Process.Start vertex into G

teot Process.start CONVERT the inner activity A if needed

<iproces APPEND the inner activity into G

S CREATE and ADD a Process.End vertex into G
ADD an edge from inner activity into
Process.End vertex

Process.End

Table 2.2 Mapping structured activities and <process> element to LCFG constructs

2.3.2. Algorithm of transforming from labeled flow control graphs
to Promela programs
The second stage of transforming from BPEL to Promela is to transform LCFG into
Promela instructions. There are 2 steps in this stage, the first step is to traverse the
LCFG to extract BPEL activities meta-objects and the second step is to map
extracted BPEL activities element into Promela instructions.

There are 11 basic activities and 7 structured activities in BPEL processes [6]. So
far | have just created mapping rules for part of elements in BPEL document.
However, because I’'m using model checking, it is not necessary to map all elements
of BPEL to Promela language. The table below shows whether elements in BPEL
are mapped into Promela constructs.

Student: Bui Hoang birc, K50, Software Engineering A Page 40

Categories

Elements in
documents

BPEL

Resolved
rules

mapping

Non-activity
elements

extensions

import
partnerLinks
messageExchanges
variables
correlationsSet
faultHandlers
eventHandlers
scope

partnerLinks
variables

Basic activities

assign
compensate
empty

exit
extensionActivity
invoke
receive
reply
rethrow
throw
validate
wait

invoke
receive
reply
assign

Structured
activities

sequence
if

while
repeatUntil
pick

flow
forEach

sequence
if

while
repeatUntil
flow

Table 2.3 Resolved mapping rules for BPEL elements

I will describe the mapping rules for each of them.
| use some conventions:
e elements are enclosed in “<” and “>”

e attributes are marked by “@” at the beginning.
o [@linkName] means the value of the attribute linkName.
e [<literal>] can be read: the text value of the element <1itera1>

e We assume that there is spec which is an object of model of Promela.

Student: Bui Hoang birc, K50, Software Engineering A

The starting point of generated Promela code is init process that will initialize all
global variables and create one instance for each process type.

Mapping rules for non-activity elements

i. <partnerLinks>

Inner element or attribute (marked by @) | Mapping rule
<partnerLink> Yes
<partnerLink>

Inner element or attribute (marked by @) | Mapping rule
@name Yes
@partnerLinkType No
@myRole No
@partnerRole No
@initializePartnerRole No

A partnerLink is mapped into a proctype and 2 rendezvous channels.

processPartnerLink (partnerLink, Spec) {

FOR EACH <partnerLink>
ADD a channel to Spec with the name: [partnerLink’s name]“PL IN”
ADD a channel to Spec with the name: [partnerLink’s name]“PL OUT”
ADD a proctype to Spec with the name: [partnerLink’s name] /* it is

safe because the pl’s name is unique in BPEL document*/

}

ii. <variables>

Inner element or | minOccurs maxOccurs use (for | Mapping rules
attribute (marked attributes)

by @)

<variable> 0 unbounded - yes
<variable>

Inner element or | minOccurs maxOccurs use (for | Mapping
attribute (marked attributes) rules
by @)

<from> 0 1 - no
@name - - required yes
@messageType - - optional yes
@type - - optional yes
@element - - optional yes

processVariables (Variables, Spec) {
FOR EACH inner variable element
IF @messageType was used
ADD to Spec’s typedef list a typedef named [(@messageType]
ADD to Spec a variable declaration: [@messageType] [@name]
IF @type was used
ADD a variable declaration: converted type [@name]
//the [@type] was converted according to Table 2.4
/* According to [6], either @messageType or @type is wused */
}

Student: Bui Hoang birc, K50, Software Engineering A Page 42

boolean

bool

string

mtype

short
unsignedShort

duration
dateTime
time

date

short

decimal

integer

int

long
negativelnteger
nonPositivelnteger
unsignedint
unsignedLong
positivelnteger
nonNegativelnteger
float

double

int

byte
unsignedByte

gYearMonth
gYear
gMonthDay
gDay
gMonth
hexBinary
base64Binary
anyURI
QName
NOTATION
normalizedString
token
language
NMTOKEN
NMTOKENS
Name
NCName

byte

Student: Bui Hoang birc, K50, Software Engineering A

Page 43

ID

IDREF
IDREFS
ENTITY
ENTITIES

Table 2.4 XML-Promela Data Type Conversion Rules

Because the string values often are used in comparisons so | will add a value in the
right side of the comparison and a value ‘other’. This idea was also used in

Other type, | will map to short and consider each integer value as a representation of
one value in the value range of the type.

To prevent the explosion of state, | chose the type as small as possible.
Mapping rules for vertices that represent basic activities

For each vertex, | will detach embedded object that represent a basic activity and
perform an algorithm on it. In this section, | will describe mapping rules for basic
activites.

i. <invoke>

Inner element or attribute (marked by @) | Mapping rule
<correlations> no
<catchAll> no
<compensationHandler> no
<toParts> no
<fromParts> no
@partnerLink yes
@portType yes
@operation yes
@inputVariable yes
@outputVariable yes

processInvoke (invoke element) {

ADD a mtype whose the name is @operation (the value of attribute
operation)

ADD a send statement like this:
[@partnerLink] PL OUT! [Qoperation] ([@inputVariable])

ADD a receive statement like this:
[@partnerLink] PL IN! [@operation] ([@outputVariable])
}

ii. <assign>
Inner element or attribute (marked by @) | Mapping rules
<copy> yes

Student: Bui Hoang birc, K50, Software Engineering A Page 44

<extensionAssignOperation>

no

Qvalidate

no

Mapping inner elements in <assign>:

<copy>

Inner element or attribute (marked by @)

Mapping rules

<from> yes
<to> yes
@keepSrcElementName no
@ignoreMissingFromData no

<from>

Inner element or attribute (marked by @)

Mapping rules

<documentation>

no

<literal> yes
<query> no
@expressionLanguage no
@variable yes
@part yes
@property no
@partnerLink no
@endpointReference no

<to>

Inner element or attribute (marked by @)

Mapping rules

<documentation>

no

<query> no
@expressionLanguage no
@variable yes
@part yes
@property no
@partnerLink no

There are 6 variants for the “from-spec” and “to-spec” which are shown in

Variant from-spec Mapping rules | to-spec Mapping
rules

Variable yes no yes yes

PartnerLink yes no yes no

Property yes no yes no

Expression yes no yes no

Student: Bui Hoang birc, K50, Software Engineering A Page 45

Literal yes yes no no
Empty yes no yes no
processAssign (assign element, Spec, Proctype) {

IF <from> uses literal variant AND there is no mtype with the same name

ADD a the value of <literal> as a mtype to Spec
IF <to> uses variable variant and the type in Promela is typedef

ADD a field in the typedef declaration: converted type [@part] to
Spec
ADD an assignment statement: [@variable].[@part]=[<literal>]
}
iii. <receive>
Inner element or attribute (marked by @) | Mapping rules
<correlations> No
<fromParts> No
<sources> Yes
@partnerLink Yes
@portType No
@operation Yes
@variable Yes
@createInstance No
@messageExchange No
processReceive (<receive>) {
CALL processTargets
CREATE a receive statement:
[@partnerLink]+”PL IN?”+[Roperation]+” ([@variable])”
ADD to the proctype named [@partnerLink]: a local variable named

the same with the procytpe followed
assessorl, assessor?2,
a send statement:
previous declared variable])”

..)typed the same with the variable
[@partnerLink]+”PL IN!”+[Roperation]+” ([value of the

by a cardinar

CALL processSources (the <sources> of this element)
IF suppressJoinFailure==true and there is no joinCondition then
create an If construct with condition is the AND-logic of

all[@linkName]==Lfalse in
}

(for example:
[Rvariable]

and

Variable declaration Mapping rules

Element No

Complex type No

Message type (with simple type parts) Yes

Message type (with complex type parts) | No

Simple type No

iv. <reply>

Inner element or | minOccurs maxQOccurs use (for | Mapping
attribute (marked by attributes) rules
Student: Bui Hoang birc, K50, Software Engineering A Page 46

@)

correlations 0 no
toParts 0 no
partnerLink required yes
portType optional no
operation required yes
variable optional yes
faultName optional no
messageExchange optional no

processReply (reply element) {
CREATE a send statement:

[@partnerLink] PT OUT! [Qoperation] ([@variable])

CALL processSources ()
CALL processTargets ()

}

Mapping rules for LCFG constructs that represent structured activities

The mapping rules from LCFG constructs for structured activities to Promela codes
perform on types of construct. For each type of construct, I will traverse all inner
vertices and perform algorithms for basic LCFG vertices as described in the above

section.
(The input argument is a Sequence seq that represents a sequence of Promela
statements)
Sequence <sequence>
scalll processSequence (Sequence) {
FOR EACH inner activity
PROCESS the activity and ADD
it into the seqg
TReceive }
e.g.
TAssign proctype Shipping() {
A {sequential statements]
TReply
Sequence.End

Student: Bui Hoang birc, K50, Software Engineering A Page 47

Flow

<flow>

processFlow (Sequence) {

FOR EACH activity
Create a new proctype
Process the activity and add

into the newly created proctype
ADD a run statement in to

the seqg

}

<if>

processIlf (Sequence) {

FOR EACH inner condition
CREATE a if-statement

PROCESS the activity and ADD
the newly created if-statement
into the seqg

}

While
Repeat-
Until

:

<while> and <repeatUntil>
processWhileRepeat (Sequence) {
CREATE a do-statement

CREATE a condition

ADD the condition into the do-
statement

PROCESS inner activity and ADD
it following the condition

ADD the newly created do-
statement into the seq

}

Table 2.5 Mapping rules for LCFG constructs that represent structured activities

Student: Bui Hoang birc, K50, Software Engineering A Page 48

Resolving links - synchronization dependencies

In order to model links between activities in <flow> activity, | create variables
which has the same name with links and can hold one of 3 values: Ltrue (for true),
Lfalse (for false) and O (for unset). Because any activity can be the source(s) or
target(s) of links, I process activity’s <sources> and <targets> before processing its
contents.

V. <sources>

Inner element or | minOccurs maxQOccurs use (for | Mapping rules
attribute (marked attributes)

by @)

<source> 1 unbounded - yes
<source>

Inner element or attribute | minOccurs | maxOccurs | use (for | Mapping
(marked by @) attributes) | rules
<transitionCondition> | (1 - yes
@linkName - - required yes

vi. <targets>

Inner element or | minOccurs maxOccurs use (for | Mapping
attribute (marked by attributes) rules

@)

<joinCondition> 0 1 - partly
<target> 1 unbounded - yes
<target>

Inner element or | minOccurs maxQOccurs use (for | Mapping rules
attribute (marked attributes)

by @)

@linkName - - requ”ed yes

processSourcesTargets (<sources>, <targets>) {
IF the activity contains both <sources> and <targets>
CREATE an atomic construct
FOR EACH <source> element
CREATE expression to access field in variable: VarName.VarPart
IF the right side expression is numeric THEN
ADD a part into the wvariable typedef deliration: the type has
the least bit and the name is the part of the expression
ELSE IF the right side expression is a string THEN
IF the string does not exist in mtype yet THEN
ADD a mtype declaration to spec

END IF
ADD a mtype part into the variable typedef deliration
END IF
CREATE if-statement ifS
ADD to ifS an option: “::”[@transitionCondition], [@1linkName]=Ltrue

Student: Bui Hoang birc, K50, Software Engineering A Page 49

ADD to ifS an option: “::”![Q@transitionCondition], [@linkName]=Ltrue
ELSE IF the activity contains only <sources>
CREATE an atomic construct
FOR EACH <source> element
CREATE expression to access field in variable: VarName.VarPart
IF the right side expression is numeric THEN
ADD a part into the variable typedef deliration: the type has
the least bit and the name is the part of the expression
ELSE IF the right side expression is a string THEN
IF the string does not exist in mtype yet THEN
ADD an mtype declaration to spec
END IF
ADD an mtype part into the variable typedef deliration
END IF
ELSE IF the activity contains only <targets>
CREATE if-statement ifS
ADD to ifS an option: “
ADD to i1ifS an option:
}

::”[@transitionCondition], [@linkName]=Ltrue
“::”![@transitionCondition], [@linkName]=Ltrue

Randomize values of variables
To simulate the behavior of true application, | add routines that randomize the value
of variables and fields in variables into process types corresponding to partner links.

To randomize a numeric field f in a variable v, | use the following codes:

v.f£=0;
do
v.f++
v.f—
od;

To randomize an mtype field f in a variable v, f can hold the value first, second and
other, I use the following codes:

v.f=0;

do
v.f=first
v.f=second
v.f=other

od;

Because of non-determinism in Spin, v.f will have a random value after the loop.

CHAPTER SUMMARY

In this chapter, | described the problem of verifying BPEL processes and current
research trends. After that, | proposed my solution architecture and algorithms in
the solution.

Student: Bui Hoang birc, K50, Software Engineering A Page 50

Chapter 3. IMPLEMENTATION

In this chapter:
e Realization of the solution described in Chapter 2 in BPEL Verification
Tool.

o Detail description of architecture, components and features of the tool.
e Basis of the implementation of the tool.

As | described in the previous chapter, there are 2 main algorithms to transform a
BPEL process into a Promela program. However, those algorithms are not enough
for a complete solution because there are many other technical problems to be
solved to realize it. Some typical problems are how to analyze a BPEL document
efficiently, how to represent a graph in a memory and the most significant problem
may be how to guarantee generated Promela programs to be correct.

For ease of reading, from this point, I will refer the tool as BVT which stands for
BPEL Verification Tool.

3.1. Tool Architecture

BVT tool contains 2 main parts:

e Transformer core: performs the transformation from a BPEL process to a
Promela program via a LCFG representation

e BVT’s graphical user interface: helps end-users to interact with the program
to verify a BPEL process.

The tool architecture is illustrated in Figure 3-1.

The main process of verifying a BPEL specification is as following: A user opens a
BPEL document which is a text file. The file will be validated against relevant
XML Schema and then transformed to a set of objects in BPEL metamodel. Then,
the objects will be transformed into a LCFG object which represents a graph and is
displayed on screen. The LCFG object is then transformed into a set of objects in
Promela metamodel. In the end of the process, a Promela program will be
generated.

The Promela program and desired properties expressed in LTL formulae will be
then fed to the Spin model checker. Users need not to know much about Spin to
check typical properties of it because the tool includes a GUI for it.

Student: Bui Hoang birc, K50, Software Engineering A Page 51

Linear
Time Logic
(LTL)
formular

LN

Promela Spin model
program checker
/
'

o

Walidata

—| LCFG)

BPEL Promela
metamodel metamadel

BPEL
process
speacification

Werification
Result

Transformer

X izl
Transformer's Graphical < ?l:taepr::z -l
User Interface

Graphical User Interface

Figure 3-1 BPEL Verification Tool architecture

BVT relies heavily on metamodels, which can be defined as follows:

Definition 3.15 Metamodel

A metamodel of a language is a set of classes, each of which represents some
element of the target language

Metamodels help us to manipulate languages in term of objects which fit very well
on object-oriented language like Java. From an instance of the target language, | can
construct a set of objects based on the metamodel, manipulate them, and then
generate another document instance.

The remain of this section, | will provide high level description of metamodels used
in BVT. For reference to classes in metamodel, see appendixes.

3.2. Metamodels in BVT

3.2.1. BPEL metamodel
In order to process BPEL documents, which, in principle, are XML documents, |
have a wide range of choices such as processing them as text files, using Document
Object Model like Java APl for XML Processing (JAXP) [27], Xerces2 XML
Parser [28] and JDOM [29].

From the XML Schema of abstract process [30] and executable process [31], | used
the Java Architecture for XML Binding (JAXB) library (read more on appendix) to

Student: Bui Hoang birc, K50, Software Engineering A Page 52

generate the metamodels. The model for abstract and executable processes contains
82 and 79 classes respectively.

For the ease of serialization of objects, | set the JAXB compiler so that all generated
classes implement the Serializable interface.

From a BPEL document, BVT uses unmarshalling functionality of JAXB library to
create a set of tightly related objects. The root of them is Tprocess that represents a
BPEL process. By using that object, | can access to every element in the BPEL
document.

Because there are 2 types of BPEL processes: executable and abstract process, the
BPEL metamodel is in 2 packages: model.bpel.abs for abstract processes and
model .bpel.exe for executable processes.

3.2.2. LCFG model
LCFG Model is created to represent a LCFG which is a directed graph. So | create a
class LCFG that inherits class ListenableDirectedGraph in the JGraphT library
(Appendix B.2. JGraphT).

Each node in this class can be bound with an arbitrary object. Besides, | created
classes that represent the start and end of graph constructs for structured activities
such as startsequence for the start of a sequence activity. Types of Start and End
nodes are listed in Table 3.1. Besides, LCFG contains many other methods designed
specifically for manipulating with BPEL elements: such as APPEND, ADD a new
node into graph, and ADD an activity into a graph.

Process.start Process.End
Start of a process End of a process
Sequence.start Sequence.End
Start of a sequence End of a sequence
RepeatUntil.start RepeatUntil. End
Start of a repeat until End of @ repeat until

Student: Bui Hoang birc, K50, Software Engineering A Page 53

While.Start While.End

Start of a while End of @ while

1f.start If.End

Start of an i ¢ End of an i

L Fowstat X Fowknd

Start of a f1ow End of a f1ow
TReply TReceive
Node for a rep1y activity Node for a receive activity
Tinvoke TAssign
Node for an invoke activity Node for an assign activity
nkx

Transition edge
Node for a condition

Table 3.1 Types of nodes in LCFG

Figure 3-2 shows the UML diagram of model.graph package which represents
LCFG and its elements.

3.2.1. Promela metamodel
In order to generate grammatical correct Promela source codes, | need a systematic
method instead of pure text manipulation. Because | use Java, an object-oriented
language, a metamodel for Promela language will be most appropriate. A After
some search on the internet without any result, | decided to create a model by
myself. | created an object model based on grammar of Promela language [13]. [32]
shows the relationship between a context-free grammar and a metamodel and
algorithms to convert between them.

Student: Bui Hoang birc, K50, Software Engineering A Page 54

ListenableDirectedGraph

nTEE VertexFactory

+ End: int=1{recdOnly}
~ sbsProcess: model bpel.sbs TRroces -

~ =x=Process: model bpel axe TProcess — LCFGFactory
+ oesteVertex(int, String) : Start

addActivity(Object, model bpel.abs. TAGtivity) : Db]Ea + GestelCFG(String) | LCFG
sddActivity(Object, model bpel exe T :

addAdtivityB{Object, model.bpel.abs, '-:
addAdtivityB{Object, model bpel.exe. TAdivity) : Object
sddVertex(Ohjec, Object) : void FIEnd e
appendGraph(Oblect, LCFG) : void
appendGraph(LCFG) : void + toSting(} : String
appendVertex(Object) : void

getAbsProcess() : model.bpel abs. TProcess

getEnd() : End

getExeProcess(] : model bpel.sxe. TProcess

getStart() : Start

LCFGI)

setAbsProcess(model.bpel abs. TProcess) : void
bpel.exe. TProcess) : void

-+

4

Serializable

4+

R

IEnd ProcEnd RUEnd SeqEnd WEnd
+ toStringl) : String + toStingl) : String + toString() : String + toStingl) : String + toStingl) : String
ExelCFG
AbsLCFG
+ addActivityObject, TActvity) : Object o——
+ sddAdlivity(Object, TActivity) : Object + addAdivityB{Object, TActivity) : Object g atieahle
+ addAdtivityB(Object, TActivity] : Object Start
Fistart ¥Start Proc Start Rl Start SeqStart WStart
+ 1oString() : String + toSking(): String + 1oSting(} : String + 1oString() : String + toSting(): String + toString(] : String
Ukils
+ ire. e
+ i i phebject, DefaultEdger Li sheObject. DefaultEdger] - void
¢ DEmme oo o Obiec s voiz
+ ndVeriex(Listensbl=Di 2 1 - void
+ FodEna(li =ciedGiaph<Objzc DefedliEsger,: End
+ Hnstart(l irorsefGrapn<Obiars. DefmultEdges): Star

Figure 3-2 Classes in model.graph package

One advantage of generating Promela programs using metamodel is the guarantee
that generated program is compatible with grammar rules. On the other hand,
metamodel’s complexity is a trade-off. The use of metamodel is highly complicated.
The reason is that the depth of syntax tree for even simple program is quite high. As
an example, let’s consider a “hello world” program:

init { printf("hello world") }

Its syntax tree whose decompositions of nonterminals "name" and "string" are
omitted has the depth of 8. That means we have to create and manage a tree of at
least 8 self enclosed objects.

spec
| -> module -> init
|-> INIT
|-> sequence -> step -> stmnt
|-> PRINT -> "printf"
|-> string -> "hello world"

Student: Bui Hoang birc, K50, Software Engineering A Page 55

My metamodel for Promela consists of 160 classes. Each class often represents a
nonterminal symbol in Promela grammar. The key points in the method of creating
the Promela metamodel:

R/
0‘0

K/
0‘0

If the right side of the production consists of:
e choices of terminals and nonterminals or nonterminals only

E.Q.
typename: BIT | BOOL | BYTE | SHORT | INT | MTYPE | CHAN |
uname

or

module: proctype| init| never| trace| utype| mtype| decl lst

—>Create an intermediate class which is an abstract class that implements
ToCode iNnterface. Then create classes that extend the abstract class for each
terminal or nonterminal at the right side. Classes for terminals are quite
simple with only method toCode().

e mixture of terminals and nonterminal:

E.Q.

send : varref '!' send args | varref '!' '!' send args
or

ch init : '"[' const '"]' OF '{' typename [',' typename] *

\J } \J
—>Consider each option as a nonterminal and repeat the step (1).
e only terminals

E.Q.
chanpoll: FULL | EMPTY | NFULL | NEMPTY
- Create an Enum for left side.

If one nonterminal appears alone on the right side more than once

E.Q.
module : .| decl 1st
and
step : .| decl 1st

—>Create wrapper class for this nonterminal character. A wrapper class should
be name with prefix W and contains only one field that is the wrapped class. In
the above case, | will create pec1 1st and wpecl 1st: wWdecl 1st contains
one field dec1 1st of the type pec1 1st. This rule is used as Java does not
allow multiple inheritances.

| used a list to represent the form [xyz]*.
E.Q.

decl 1st: one decl [';' one decl] *
2> private List<One decl> decls = new ArrayList<One decl>();

Student: Bui Hoang birc, K50, Software Engineering A Page 56

http://spinroot.com/spin/Man/send.html

For simple character and string

E.Q.

number ¢ '0' | "1' | '2' | '3' | "4 | '5' | 'e' | '7' | '8'" |
191

string : '""" [any ascii char] * '"!'

- Create Alpha, Number and Str classes with methods that check the value

constrains.

R/
0‘0

For the rule of this form, which is very popular in the grammar:
arg lst : any expr [',' any expr] *
| create a class with a list of inner classes which represent the nonterminal in the

right side.

Some other notes about the metamodel:

o The code also contains helper classes and codes in order to make the use of
the code more effective.

o0 ToCode Interface contains only 1 method toCode() that returns the code

corresponding to the object:

public interface ToCode {
public String toCode () throws Exception;
}

Class Spec is the root of Promela grammar.

All class must implement interface Tocode. When calling tocode () method
on an instance of a Spec, it will be call recursively and return a string of
source code.

Naming method: Class names are based on the meaning or function of the code
structure it represents.

The method toCode() contains checking functionality that checks the validation
of the input data such as null value for field that must not be null and the range
of values. The checking routines will throw an exception of the type
RuleviolationException. For simplicity, the grammar constraint checking is
performed on this point, i.e. code generation point, only.

3.3. Transformer core module — implementation of algorithms

Transformer core module consists of 2 packages:

e transformer.bl for BPEL to LCFG transformation: Method transform() in
class BLTransformer transforms a BPEL process (as
model.bpel.abs.TProcess Of model.bpel.exe.TProcess) Into a LCFG
interface.

Student: Bui Hoang birc, K50, Software Engineering A Page 57

http://spinroot.com/spin/Man/grammar.html#any_ascii
http://spinroot.com/spin/Man/grammar.html#any_expr
http://spinroot.com/spin/Man/grammar.html#any_expr

e transformer.lp for LCFG to Promela transformation: Method transform() in
class LrTransformer transforms a LCFG into a Spec which is the root of
Promela grammar.

Because there are two types of processes: executable and abstract, | used Factory
Method design pattern in these package to treat them as one kind. UML diagrams of
these packages are shown in Figure 3-3 and Figure 3-4.

Algorithms in previous chapter are implemented on metamodels. For algorithm of
transforming BPEL processes to LCFGs, | traverse the a BPEL document and
create objects from it using BPEL metamodel and then construct a labeled flow
control graph and attach them to the graph. For algorithm of transforming LCFGs to
Promela programs, | traverse LCFG instance, detach BPEL element objects,
construct an instance of Spec which is the root of Promela grammar, and then
generate Promela code by calling tocode () method.

XPath expression is processed by using a lexical analyzer. This analyzer generated
from JJTree file for XPath 2.0 [33] using JavaCC parser generator. From tokens
resulted from the analyzer, | create a parser for further processing. So far, this
processing is limited to comparison expressions and variables with one level of
fields.

class bl .~
BLTransformer
+ owiStrActmodel bpel.exe. TAdtivity) : LCFG
+ ovtStract{model bpel.abs. TAdtivity) : LCFG
+ izStructured|Object] - boolean
+ transform{model. bpel.abs. TProcess) : LCFG
+ transform{model. bpel.exe. TProcess) | LCFG
+ xtrAct{model bpel.abs. TExtensibleElements) : model. bpel.abs. TActivity
+ xtrAct{model bpel.exe. TExtensibleElements) : model bpel exe. TActivity
AbsBLTransformer ExeBLTransformer
+ owtStrAch TActivity) : LCFG + owtStrAc TActivity) : LCFG
+ isStructured{Object) : boclean + isStructured{Object) : boclean
+ transform{TProcess) : LCFG + transform{TProcess) : LCFG
+ xtrAc TExtensibleElements) : TActivity + xtrAc TExtensibleElements) : TActivity
BLTransformerFactory
+ oreateBL TransformerString) : BLTransformer
+ oreateBL TransformerF{Siring) : BL Transformer

Figure 3-3 Classes in package transformer.bl

Student: Bui Hoang birc, K50, Software Engineering A Page 58

class lp

LPTransformer

processActivitylmodel bpel.abs. TAdivity, Spec, Proctype, Sequence, boolean) : void
processActivitylmodel bpel.exe. TActivity, Spec, Proctype, Sequence, boolean) : void
processPartnerLinks{model bpel.abs TPartnerLinks, Spec) : void

processPartnerLinks{model bpel.exe TPartnerLinks, Spec) : void

processSourcesT argets(model bpel.abs. TActivity, Spec, Proctype, Sequence, boolean) : void
processSourcesT argets(model bpel.exe TActivity, Spec, Proctype, Sequence, boolean) : void
process\ariables/model bpel abs. TWariables, Spec) : void
process\ariables{model bpel exe TWariables, Spec) : void

transform(LCFG) - Spec

/<}’ A\

LR S

AbsLPTransformer

- genBExe(): void

getloinCondition|{TActivity) : Expr

getiJoinCondition{ T Activity) : Expr

processAchivity[TActivity, Spec. Proctype, Sequence, boolean) : void
processPartnerlinks{TPartnerLinks, Sped) : void
processSourcesT argets(T Activity, Spec, Proctype, Sequence, boolean) : void
processVariables{TVariables, Spec) : void

transform{LCF3G) : Spec

L

Exel PTransformer
LPTransformerFactory
- genExel): void
+ oeatel PTransformer{String) : BL Transformer - getloinCondition{ T Activity) : Expr
+ oreatel PTransformerF{String) : BLTransformer - getMloinCondition{TActivity) : Expr

processActivity| TActivity, Spec, Proctype, Sequence, boolean) : veid
processPartnerLinks{ TPartnerLinks, Spec) : void
processSources T argets{TAdtivity, Spec, Proctype, Sequence, boolean) : void
processVariables{TVariables, Sped) : void

transform{LCFG) : Spec

L A

Figure 3-4 Classes in package transformer.Ip

3.4. Other features and techniques

e BPEL document Validation: Before transforming any BPEL documents,
they must be valid. BVT validates them against BPEL 2.0 XML Schema. If
there is no error, the process will continue, otherwise, an error will appear. In
order to validate these documents, | use validator in JAXP open source
library [27].

e Exporting graph in different file formats: Tool support exporting LCFGs
into DOT[34], GML[35], GraphML[36] that are file formats for graph
interchange (using JGraphT), SVG and PNG formats for images processing
(using JGraphb).

e Automatic graph layout and displaying interactive graph on screen:
Vertices and edges in LCFG are laid out using JGraphTreeLayout In
JGraph5 for pretty display; users can move vertices and edges of graph
interactively. This feature is implemented by using JGraph5.

e Graphical User Interface for Spin: Users can edit, specify and use all
function of Spin via a GUI. This GUI is adopted from jSpin.

Student: Bui Hoang birc, K50, Software Engineering A Page 59

e Syntax highlighting: Promela codes and LTL formulae are displayed with
colors and different fonts, so it’s easier for users to edit them. This feature is
implemented basing on jsyntaxpane [37] open source library.

For more information about JAXB, JGraphT, JGraph5 and jSpin, see Appendix B.

CHAPTER SUMMARY

In this chapter, | have described the architecture and main parts of BVT, a tool that
implements the transformation algorithms. | also provide some details of metamodel
for processing BPEL documents, LCFG instances and Promela programs. Finally, |
discuss other features related to user interface and exporting and how they are
implemented.

Student: Bui Hoang birc, K50, Software Engineering A Page 60

Chapter 4. TOOL TESTING AND METHOD EVALUATION

In this chapter:
Result of a test case for BVT
Screenshots of BVT in action

Evaluation of proposed solution
Evaluation of BVT

4.1. A Transformation Test

To test the transformation algorithms, | use the 4 standards example process in
BPEL 2.0 specification [6] as other authors did. Because of the lack of space, | just
show the result on the loanApproval process which is specified in [6]. The result
LCFG is shown in Figure 4-1 and Promela program is shown in Table 4.1.

L Howstart]

Process.End

Figure 4-1 LCFG for loanApproval process

mtype = { Lfalse }
mtype = { Ltrue }
mtype = { request }
mtype = { check }

Student: Bui Hoang birc, K50, Software Engineering A Page 61

mtype = { low }
mtype = { yes }
mtype = { approve }
mtype = { other }

typedef creditInformationMessage {
byte amount

}

typedef riskAssessmentMessage {
mtype level

}

typedef approvalMessage {

mtype accept

}

chan customerPL IN = [0] of {mtype, creditInformationMessage}
chan customerPL OUT = [0] of {mtype, approvalMessage}

chan approverPL IN = [0] of {approvalMessage, mtype}

chan approverPL OUT = [0] of {mtype, creditInformationMessage}
chan assessorPL IN = [0] of {riskAssessmentMessage, mtype}
chan assessorPL OUT = [0] of {mtype, creditInformationMessage}

creditInformationMessage request VAR
riskAssessmentMessage risk
approvalMessage approval
mtype receive to assess
mtype receive to approval
mtype approval to reply
mtype assess to setMessage
mtype setMessage to reply
mtype assess_ to approval
proctype loanApprovalProcess () {
run TReceivel () ;
run TInvoke2();
run TAssign3();
run TInvoked ();
run TReply5 ()
}
proctype customer () ({
creditInformationMessage customerl;
customerl.amount=0;
do
customerl.amount++
customerl.amount--
break
od;
customerPL IN!request,customerl;
mtype operation2;
approvalMessage customer3;
end:customerPL OUT?operation2,customer3
}
proctype approver () {
mtype operationl;
creditInformationMessage approver?2;
end:approverPL OUT?operationl, approver2;
approvalMessage approver3;
do
approver3.accept=yes
approver3.accept=other
break
od;
approverPL IN!approve,approver3
}
proctype assessor () {
mtype operationl;

Student: Bui Hoang birc, K50, Software Engineering A Page 62

creditInformationMessage assessor?2;
end:assessorPL OUT?operationl,assessor2;
riskAssessmentMessage assessor3;
do
assessor3.level=low
assessor3.level=other
break
od;
assessorPL IN!check, assessor3
}
proctype TReceivel () {
mtype operationl;
customerPL INZoperationl,request VAR;
atomic{
if
request VAR.amount < 10000;
receive to assess=Ltrue
! (request VAR.amount < 10000);
receive to assess=Lfalse
fi;
if
request VAR.amount >= 10000;
receive to approval=Ltrue
! (request VAR.amount >= 10000);
receive to approval=Lfalse
fi
}i
}
proctype TInvoke2 () {
mtype operationl;
if
receive to assess == Ltrue;
assessorPL OUT!check, request VAR;
assessorPL IN?operationl, risk;
atomic{
if
risk.level == low;
assess_to setMessage=Ltrue
! (risk.level == low);
assess_to setMessage=Lfalse
fi;
if
risk.level != low;
assess to approval=Ltrue
! (risk.level != low);
assess_to approval=Lfalse
fi
bi
receive to assess == Lfalse;
atomic{
assess_to setMessage=Lfalse;
assess_to approval=Lfalse
bi
fi
}
proctype TAssign3 () {

if

assess to setMessage == Ltrue;
approval.accept=yes;
atomic{

setMessage to reply=Ltrue

i

Student: Bui Hoang birc, K50, Software Engineering A

Page 63

: assess _to setMessage == Lfalse;
atomic{
setMessage to reply=Lfalse
bi
fi
}
proctype TInvoke4d () {
mtype operationl;
if
:: receive to _approval == Ltrue || assess_to approval == Ltrue;
approverPL OUT!approve,request VAR;
approverPL IN?operationl,approval;
atomic{
approval to reply=Ltrue
bi
:: receive to approval == Lfalse && assess to approval == Lfalse;
atomic{
approval to reply=Lfalse
bi
fi
}
proctype TReply5 () {

if

setMessage to reply == Ltrue || approval to reply == Ltrue;
customerPL OUT!request, approval
fi

}

init {run loanApprovalProcess();
run customer () ;

run approver();

run assessor ()

}

Table 4.1 Generated Promela program for loanApproval process

The generated program contains 10 concurrent processes: 3 processes emulate 3
partner links: customer, approver and assessor; 1 process emulates the whole
loanApproval process that runs 5 others processes that emulates 5 concurrent
activities in <f1ow> activity; and a process init() that serves as the entry point for all
other processes.

I will verify the safety, liveness and another property of the loanApproval model.
Due to the explosion of state space, the number of states of this model exceeds my
personal computer memory, so | have to change the data type of amount field in
creditInformationMessage from short into byte. To make This change not to affect
the verification result | also change the right hand side number in comparisons of
request_VAR.amountintO 100.

The verification result is shown in Table 4.2: besides the statistics on number of
states, running time, depth in reachability graph and memory usage, no deadlock
and no unreachable state was found in this process.

(Spin Version 5.2.4 -- 2 December 2009)
+ Partial Order Reduction

Student: Bui Hoang birc, K50, Software Engineering A Page 64

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)

+

invalid end states

State-vector 100 byte, depth reached 286, errors: 0
42288 states, stored
23561 states, matched

65849 transitions (= stored+matched)
556 atomic steps
hash conflicts: 587 (resolved)

6.504 memory usage (Mbyte)

unreached in proctype loanApprovalProcess
(0 of 6 states)

unreached in proctype customer
(0 of 10 states)

unreached in proctype approver
(0 of 9 states)

unreached in proctype assessor
(0 of 9 states)

unreached in proctype TReceivel
(0 of 15 states)

unreached in proctype TInvoke2
(0 of 23 states)

unreached in proctype TAssign3
(0 of 10 states)

unreached in proctype TInvoke4d
(0 of 11 states)

unreached in proctype TReply5
(0 of 5 states)

unreached in proctype :init:
(0 of 5 states)

pan: elapsed time 0.098 seconds
pan: rate 431510.2 states/second

Table 4.2 Default verification of loanApproval Promela program with Spin

Now | verify that if the process satisfies the property: For requests of the same
amount, there must be no case in which one of the requests is approved but the
other is processed differently.

To check that property, | add 2 definitions to the above program:

#define accepted (approval.accept==yes)
#define rejected (approval.accept!=yes)

and using spin against the LTL formula for that property which is “! (<> (accepted
s& rejected))”. (The operator “<>" means eventually and “!” means “not”.)

The translated never claim for the negated LTL formula is

never { /* (<> (accepted && rejected)) */
TO init:
if
((accepted) && (rejected)) -> goto accept all

(1) -> goto TO init

Student: Bui Hoang birc, K50, Software Engineering A Page 65

fi;
accept all:
skip
}
The result is shown in Table 4.3: There is no never claim violation found, i.e. the

process satisfies the property.

warning: for p.o. reduction to be valid the never claim must be stutter-
invariant
(never claims generated from LTL formulae are stutter-invariant)

(Spin Version 5.2.4 -- 2 December 2009)
+ Partial Order Reduction

Full statespace search for:

never claim +

assertion violations + (if within scope of claim)
acceptance cycles + (fairness disabled)
invalid end states - (disabled by never claim)

State-vector 104 byte, depth reached 1590, errors: 0
42800 states, stored
39486 states, matched

82286 transitions (= stored+matched)
556 atomic steps
hash conflicts: 1064 (resolved)

Stats on memory usage (in Megabytes):

4.898 equivalent memory usage for states (stored* (State-vector +
overhead))
3.017 actual memory usage for states (compression: 61.59%)

state-vector as stored = 58 byte + 16 byte overhead
2.000 memory used for hash table (-wl9)
0.305 memory used for DFS stack (-m10000)
5.235 total actual memory usage

unreached in proctype loanApprovalProcess
(0 of 6 states)

unreached in proctype customer
(0 of 10 states)

unreached in proctype approver
(0 of 9 states)

unreached in proctype assessor
(0 of 9 states)

unreached in proctype TReceivel
(0 of 15 states)

unreached in proctype TInvoke2
(0 of 23 states)

unreached in proctype TAssign3
(0 of 10 states)

unreached in proctype TInvoke4
(0 of 11 states)

unreached in proctype TReplyb
(0 of 5 states)

unreached in proctype :init:
(0 of 5 states)

pan: elapsed time 0.219 seconds
pan: rate 195433.79 states/second

Table 4.3 Verification result for a property of loanApproval process

Student: Bui Hoang birc, K50, Software Engineering A Page 66

4.2. Some Screenshots of BVT
These are some screenshots of the tool when it executes.

&) Test.

File Help
Lookin: | |, LoanApproval G A = =)
|
Desktop
B
LY
Flename: |LoanApproval.bpel
Network g of type: [Opening BPEL fles v
Figure 4-2 BVT screenshot — opening a BPEL document
Erest - . % — - =T =
File Help

[Save As...|save

2xml version="1.0" e
process xmlns="http:
<import importType-|
<partnerLinks>
<partnerLink myRo
<partnerLink name
<partnerLink name
</partnerLinks>
<variables>
<variable message
<variable message
<variable message
</varisbles>
<faultHandlers>
<catch faultMessal
<reply faultNan
</catchy
</faultHandlers>
<flow>
<links>
<link
<link
<link
<link
<link
<link
</links>
<receive createln
<sources>
<source linkN
<cransition|
</sourcex>
<source 1inkN
<transicion|
</source>
</sources>
</receive>
<invoke inputVari
<targets>
L) — r

-

Save As...|Save Interpret...

™ 1 mtyp= = { Lfalse }
/ \ 2 mtype = [Ltrue }
"'(3 mtype 1 request }
4 meype = { check)
5 meype = (low }
T € mtype = { yes }
{ approve }
[S5C)
saven: [foues - -7 V°E :::dxc]nfuxmat,\.unl{assag& 1
| generated
a3 riskAssessmentMessage {
= vel
Recent [tems
approvalliessage [
- cept
Deskiop
tomerPL_IN = [0] of (mtyps,
tomerPL_OUT = [0] of {mtype,
[l roverPL_IN = [0] of (approva
MyDoc;J:nents roverPL OUT = [0] of (mcyps,
essorPL_IN = [0] of [riskiss
essorPL_OUT = [0] of {mcyps,
ﬂ!\l formationlessage rscquest_VAR
o ssmentMessags risk
Message approval
. ceive_to_assess
@ File name Loan Approval ceive_to_approval
roval to repl:
ek Fesof ve: 50T e fomet o] [aiceitichs meonesmage
- e .

|GraphiL file format
(6L il format.
[poT fie format

thessage_to_reply
32 mtype assess_to_approval
33 proctype loanApprovalProcess ()
34 run TReceivell):
35 run TInvekeZ():
36 run Thssignd();
37 run TImvoked():
38 run TReplyS()

creditInformationles
approvalMessage}

1Message, mtype}
creditInformationis

essmentMessage, wcyp
creditInformationls

Figure 4-3 BVT screenshot — exporting a graph in many file formats

Student: Bui Hoang birc, K50, Software Engineering A

Page 67

| N R, - —— . WS B s

File Help
Save As... Save Gave As... Save interpret..,
?xml version="1.0" encoding="UTF-8 1 mtype = (Lfalse }
process xmins="http://docs.oasis-o 2 meype = Lorue)
<import importType="http://schema: 3 mtype = (request)
<partnerLinks> 4 meype = (check }
<partnerlink myRole="loanServic 5 miype = { low }
<partnerlink name="approver” pa; 6 mrype = { yes)
<partnerlink name="assessor" pa: 7 mtype = { approve }
</partnerLinks> 8 mtype = (other }
<variables> 2 typedef creditInformationMessage (L
<variable messageType="1ns:cred: 10 short amount
<variable messageType="1ns:riskl i
<variable messageType="1ns:appre 1z typedef riskAssessmentNessage {
</variables> 13 muype level
<faultHandlers>

14 }
<catch faultMessageType="lns:em 15 typedef approvalMessage {

<reply faultName="unableToHan: 16 mtyps accept

</catch> 17y
</faultHandlers> 18 chan customerPL_IN = [0] of {mtype, creditInformationMe
<flow> 19 chan customerPL_OUT = [0] of {mtyps, approvalMessage)
<links> -

20 chan approverPL IN = [0] of (approvalMessage, mtype)
21l chan approverPL_OUT = [0] of {mtype, creditInformationl
22 chan assessorPL_IN = [0] of (riskissessmentMessage, mc)
23 chan assessorPL_OUT = [0] of {mtype, creditInformation
asaess-to-gethessy 24 creditInformationllessage Tequest_VAR

<link name="setMessage-to-rep: 25 riskhssessmentHessage risk -

<link name:

<link name="receive-to-assess
receive-to-approvi
<link name="approval-To-reply’
<link name:

<link name:

assess-to-approval 26
</links> o
<receive createInstance="yes" o o
<sources> o
<source linkName="receive-t
<transitionCondition>$reay
</source>
<source linkName:
<transitionCondition>§reqy

approvallMessage approval
mtype receive_to_assess

meype receive_to_approval

meype approval_to_reply

30 nrtype assess_to_setMessage

31 mtype setMessage_to_reply

32 mrype assess_te_approval

33 proctype loankpprovalProcess () (

"receive-t

34 run TReceivel();

</source> o 35 run TInwokeZ();
</sources> 36 run Thssign3();
</receive> 37 run TInvoked(): @
<invoke inputVariable="request” < [+

e de THE ST =. - - i
File Help
Save As... Save Save As... Save Interpret...
2xml version="1.0" encoding="UTF-&' 1 meype = (Lfalse } o
process xmlns="hrtp://docs.oasis-o 2 moype = { Lerue }
<import importType="hutp://schena: 3 mtyps = (request)
<partaerlinks> 4 meype = { check }
<partnerlink myRole="loanServic 5 mtype = (low }
<partnerLink name="approver" pa: 6 mtype = { yes } 3
<partnerlink name - - (approve)
</partnerLinkss (&) Save =) g,
<variables> creditInformationiessage {
<variable messageType="lns:cred: savein: | | figures - 2 EE P ounc
<variable messageType="lns:riski
<variable messageType="1ns:appT 7= b generated riskissessmentMessage (
</variables> i evel)
<faultHandlers>] Recent Items
<caten faultMessageType="lns:er: l approvallessage (
<reply faultName="unableToHan w ccept
</catch>
<gaulcﬂandler5> Desktop stomerPL_IN = [0] of {mtype, creditInformationl:
<tlow>

stomerPL_OUT = [0] of (wtyps, approvallessags}

<11111k3; 5 proverPL_IN = [0] of {approvalliessage, mtype)
<lin] . proverPL_OUT = [0] of (mtype, creditInformation!
line 'y Documents

SessorPL_IN = [0] of (riskissessmentliessage, mry

<link sessorPL_OUT = [0] of (mcyps, creditInformationt
<link name="assess-to-setMess: ul\. InformationMessage request VAR
<link setMessage-to-rep sessmentMessage risk
<link assess-to-approva: Computer 1Message approval

</links>

. = eceive_to_assess
<receive createlnstance="yes" o @ Fenane: [Yoanapproval L e teappreval
<sources>
Network Files of type: ﬂ Save selected file|VaLl_to_reply
ssess_to_sstlessage

<source linkName="receive-is Saving Promela Files ~

<transitionCondition>$reqy

T M _to_reply
</souzce> 32 mtype assess to_approval
<source linkName="receive-ti 33 proctype loankpprovalProcess () {
<transitionCondition>$reqy ” 3% run TReceivel();
</source> - 35 run TInvokeZ ():
</:rn\71rca:r> 36 run TAssign3():
</receives 37 run TInvoked():
<invoke inputVariable="request™ 38 run TReplyS()
<targets> 39) -
<target linkName="receive-t a7 i 3

Figure 4-5 BVT screenshot - saving the generated Promela program to a text file

Student: Bui Hoang Duc, K50, Software Engineering A Page 68

e m — —— - @] =)

| savess... save Fave As... |save finterpret.
oa] [£) BVT-Spin GUI = | B i)
o
File Edit Spin Convert Options Settings Output SpinSpider Help 1 (<>(accepted && rejected))
Open | cCheck Random Interactive Tral |weak famess |Acceptance ||| Verify Stop | Translate Clear Load | Spinspider | Maxmize
pmi /- “[Iwarming: for p.o. reduction to be valid the never claim must be
#define accepted (approval.accept==yes) stutter-invariant
#define rejected (approval.accept!=yes) _l|tnever c1ains generated fron LTL fornulas are stutter-invariant)
“[|(Spin Version 5.2.4 -- 2 December 2003)
ntype = { Lfalse } + Partial Order Reduction 1
ntype = { Ltrue } Full statespace search for:
ntype = { request } never claim
ntype = { check } assertion violations + (wf within scope of clain)
ntype = { Tow } acceptance cycles + (Fairness disabled)
au; ntype = { yes } invalid end states - (disabled by never clain)
<catch faultMessageTyfl1g ntype - { approve } State-vector 104 byte, depth reached 1590, eee errars: O ses
<reply faultName= 11 ntype = { other } 42800 states, stored
</cateh> 17 typedef creditInfornatiorMessage { 39486 states, matched
</faultHandlers> 13 byte| anount 82286 transitions (= storedsmatched)
<flow> 14 1 556 atomic steps
typedef riskAssessmentMessage { hash conflicts: 1064 (resolved)
ntype level Stats on memory usage (in Megabytes):
1 4.898 equivalent memory usage for states
typedef approvalMessage { (stored*(State-vectar + overhead))
ntype accept 2.894 actual memory usage for states (compression: 59.09%)
state-vector as stored = 55 byte + 16 byte overhead
chan customerPL_IN = [0] of {mtype, creditli 2.000 memory used for hash table (-w19)
chan customerPL_OUT = [0] of {mtype, appr‘j\/ 0.061 menory used for DFS stack (-n2000)
chan approverPL_IN = [0] of {approvalMe: 4.930 total actual memory usage
chan approverPL_0UT = [0] of {mtype, cremt unreached in proctype loanApprovalProcess
chan assessorPL_IN = [0] of {r‘15kf-\55655ment! (0 of & states)
chan assessorPL_OUT = [0] of {mtype, credit unreached in proctype customer
credw‘ﬂnfnrmammMegsaqe request VAR - (0 of 10 states)
+ ||unreached in proctype approver -
c:\MinGd\bin\gcc.exe -0 pan pan.c ... donel Al
c: \USerE\Duc\DeSktjp\ﬁgures\generated\pan £ -a -n2000 -X ... done!
exelib\spin.exe -a -N C: \Users\Du:\De‘sktjp\ﬁgure‘s\generated\'\JanApprjvEﬂ 1t1 ToanApproval.pnl ... dons!
c:\MinGW\bin\gc
- c: \USerE\Duc\DeSktjp\ﬁgures\generated\pan -a -n2000 -X ... done!
<i -
= T
<target 1inkNmE="rEcElvE—tﬂ ‘ ¥
R | « 0 v

Figure 4-6 BVT screenshot - verifying the generated Promela program with a property

4.3. Evaluations

4.3.1. Evaluation of proposed algorithms
In this section, | compare the features my proposed solution with other approaches
done by other researchers could provide: control flow handling, data handling,
synchronization dependencies handling and XPath translation. This comparison is
shown in Table 4.4.

All of the approaches are able to verify control flow of BPEL processes because it’s
essential part of any process. Some of approaches use an abstraction of data, i.e.
variables, and don’t analyze XPath expressions. Although they are only able to
verify control flow such as researches [17] and [18] but they are very general and
fully developed.

In this table, only 2 approaches done by Xiang Fu et al. (i.e. [19] and [20]) and my
solution contain data and XPath expressions handling. To handle XPath
expressions, they use CUP parser generator while | used JavaCC parser generator.
My solution also takes into account synchronization dependencies handling as they
did.

In those papers, [26] includes a generated Promela source code for loanApproval
example in [6], but BPEL process was not as fully transtlated as my solution does
because it does not contain randomization and include operations on partner links.
Other papers with the same approach do not include generated Promela code and
performance so | could not make comparison on these criteria.

Student: Bui Hoang birc, K50, Software Engineering A Page 69

Control |Data Links XPath
flow handling |(Synchronization |expressions
No. | Name handling dependencies) handling
handling

Model-based Verification of Web|Y€S no no no

1 |service Compositions [17]

2 |Describing and Reasoning on Web |yes no no no
Services using Process Algebra [18]

3 [Analysis of Interacting BPEL Web|yes yes yes yes
Services [19]

4 |Model Checking Interactions of|yes yes yes yes
Composite Web Services [20]

5 |Transforming BPEL to Petri nets[21] |yes no yes no

6 |Verifying Web Services Composition |yes no yes no
Based on Hierarchical Colored Petri
Nets[22]

7 | Model-Checking Behavioral | yes no yes no
Specification of BPEL Applications
[23]

8 |LTSA-WS:a tool for model-based|yes no no no
verification of web service
compositions in Eclipse [24]

9 |Towards automatic verification of|yes no no no
web-based SOA applications [25]

10 |A Methodology and a Tool for Model- | yes yes yes no
based Verification and Simulation of
Web Services Compositions [26]

11 |BVT tool yes yes yes yes

Table 4.4 Solutions comparison

Author in [38] also divided approaches in 2 main directions. Some of them
concentrate fully on the control flow level and use abstraction of data. This first
approach is quite successful and some automated tools have been developed such as
LTSA-WS [24]. The second approach includes processing XML Schema data types
and XPath expressions. While some results have been established, verification is
limited to very simple processes.

As the table 4.1 shows, my solution has the following advantages:
- The proposed solution contains the features of other algorithms. Besides
being able to verify the control flow, it can handle data in XML Schema data
types and XPath expressions and links (synchronization dependencies).

Student: Bui Hoang birc, K50, Software Engineering A Page 70

- The use of LCFG as intermediate form and GUI for Spin may help students
who study BPEL and model checking method to understand BPEL control
flow and the method more easily.

- The Spin model checker is a very popular model checkers so there may be
more support and concern for this solution from other researchers.

- Generated Promela source code is readable (instead of hardly readable codes
from automata) so it can be edited manually to satisfy users’ need.

However, the proposed solution has some disadvantages:
- Mapping rules for some activities and BPEL elements are still not fully
developed.
- Data handling and XPath processing rules have not covered all cases.

4.3.2. Evaluation of BPEL verification tool
The BPEL Verification Tool has the following advantages and advantages as
follows:
Advantages:

- It uses all open source, well developed libraries and development tools so it
costs no license fee and libraries are updated regularly.

- It has simple graphical user interface with user-friendly features such as
syntax highlighting and interactive graph display that helps new users use it
more easily.

- It supports various output formats for LCFG so users can use other tools to
analyze the control flow of a BPEL process or other image processing.

- The tool is based on Java so it can be adopted on many different platforms.

Disadvantages:
- It requires users to install GNU C Complier (gcc) if they want to verify the
generated Promela program using Spin.

CHAPTER SUMMARY

In this chapter, | have described a test case for the tool, the verification result of
generated program and screenshots of BVT. | also compared my solution with 9
other solutions. The comparison shows that my solution has equivalent features to
other solutions.

Student: Bui Hoang birc, K50, Software Engineering A Page 71

CONCLUSIONS AND FUTURE WORKS

Established Achievements

This thesis has proposed a solution for the BPEL process verification problem and a
tool that implements the solution.

Specific results of this thesis (aligned to chapters) are:

Understanding of related theoretical foundations and tools:

o SOA, Web Service, BPEL, model checking and some formal models
used in model checking.

o BPEL language which is designed for compose web services in
orchestration manner and some tools for BPEL process development
and execution.

o Spin, a specific model checker and Promela, a modeling language for
Spin.

Algorithms for transforming BPEL processes to Promela programs over a
graph representation. My translation from BPEL to Promela language via
LCFG form still has not been done by other researchers.

A metamodel for processing BPEL documents based on JAXB open source
library for binding XML schemas and Java representations.

A model for constructing and displaying graphs based on JGraphT and
JGraph5 open source graph libraries.

A metamodel for Promela source code generation based on grammar rules of
Promela language.

Methods to process XML Schema data types and XPath expressions.

BPEL Verification Tool, a tool that realizes above algorithms and models
and helps users to verify BPEL processes via a graphical user interface.

Future Works
Some improvements should be done are as follows:

Adding more rules into the algorithms so that it can model more activities at
higher completion level.

Adding modeling features of exception and fault handlers into algorithms.
Adding a feature that supports users who has a little knowledge about Linear
Temporal Logic to specify properties in an easier manner, i.e. users can
specify queries in a language that can be translated into LTL formulae and
embed auxiliary variables as well as assertions by interacting with the LCFG
on GUI.

Student: Bui Hoang birc, K50, Software Engineering A Page 72

Conclusion

The need of verifying properties of BPEL processes becomes more popular as Web
Service architecture and BPEL standards are more widely adopted. This thesis has
proposed a method for the problem of BPEL process verification using the Spin
model checker and developed a tool that realized the solution. So this thesis has
achieved all of its initial objectives.

Due to the limit of time, the proposed solution still has some flaws while it also
showed future development directions. For the demand of reliable distributed
software is increasing, this approach would have limitless potential application in
near future.

Student: Bui Hoang birc, K50, Software Engineering A Page 73

Appendix A. Paper (Vietnamese)

This is my paper that won a minor honor and was published in the proceedings of
Conference of Scientific Research for students in School of Information and

Communication Technology 2010.

Kiém Dinh Tien Trinh BPEL
Str Dung Trinh Kiém Tra M6 Hinh SPIN

Bui Hoang buc

Tém tit- BPEL la mot chuéin phd bién cho viée
tich hop cic dich vu web. Nguoi ding co thé sir
dung BPEL dé phéi hop cac dich vu web theo mdt
tién trinh nghiép vu va tao nén mdt dich vu web
méi. Van dé dat ra 1a tinh ding din cha cac tién
trinh BPEL cin phai dwoc kiém dinh. Trong céng
trinh nay, em dé xuit mot cach tiép can cho viéc
kiém dinh cac tién trinh BPEL 2.0 bing cach si
dung trinh kiém tra md hinh SPIN. Phwong phap
ciia em bao gdm viéc bién dich chwong trinh BPEL
sang chwong trinh Promela théng qua dd thi ludng
diéu Kkhién c6 gin nhin. Trong phwong phap nay,
em xir Iy dwoc cac phu thudc dong bd hoa trong
ngdn ngir BPEL va hién thi truc quan tién trinh
BPEL nhim h tro' ngudi nha phat trién siv dung
SPIN mét cich dé dang.

Tir khéa—BPEL, KIEM DINH, Promela,
SPIN.

1. GIOI THIEU

Xay dung hé théng phan mém
dua trén web service da mang lai lgi
ich to Ion trén nhiéu khia canh khac
nhau nhu chi phi, mic d6 rai ro, thoi
gian, bao tri ... Trong d6, viéc tich
hop cac web service lam viéc theo
dung kich ban nghiép vu la mét yéu
cau quan trong va BPEL (Business

Bui Hoang Duec, sinh vién lop Céng Nghé Phan Mém,
khéa 50, Vién Cong nghé thong tin va Truyén théng,
truong Dai hoc Bach Khoa Ha Noi (dién thoai: (+84)
972347051, e-mail: ducbuihoang@gmail.com).

© Vién Cong nghé thong tin va Truyén
thong, truong Pai hoc Bach Khoa Ha Noi.

Student: Bui Hoang birc, K50, Software Engineering A

Process Execution Language) da dugc
xay dung dé phuc vu cho muc tiéu nay

[8].

Mot yéu cau duoc dit ra khi xay
dung tién trinh BPEL 14 kiém tra tinh
chinh xac cua chdng. Hién nay, da co
nhiéu nghién ctu dé cap téi van dé
nay [1]. Nhiing nghién cau nay
thuong dich chuyén tién trinh BPEL
sang mot dinh dang khac nhu
automata [2], EFA [3] hay Petri net
[4]; sau d6, sir dung cac model
checker dé kiém tra thuoc tinh can
thiét caa tién trinh BPEL. Déi voi da
s6 nguoi phat trién phan mém, cac
nghién ciu ndy kha kho hiéu va doi
hoi nhiéu kién thic vé model
checking.

SPIN [7] la mot model checker
duoc sir dung khd phd bién. Céc
chuong trinh duogc viét bang ngdn ngit
Promela s& dwgc SPIN st dung dé
kiém tra. Mac du, nguoi ta co thé dich
chuyén tryc tiép tir tién trinh BPEL
sang ngdn ngit Promela dé kiém tra.
Nhung cich lam nay khong gitp

Page 74

ngudi st dung hiéu rd dic ta tién trinh
BPEL va mo hinh can kiém tra.

Vi vy, trong bai bao nay, t6i dé
Xuit mot phwong phéap kiém tra tién
trinh BPEL théng qua SPIN model
checker. Tién trinh BPEL dugc dich
chuyén sang dinh dang do thi mot
cach truc quan. Céc thdng tin chinh
cua tién trinh BPEL van duoc bao ton
va sip xép mét cach hop 1y trén d6
thi. Tiép theo, dinh dang dd thi s&
duoc dich chuyén sang ngdén ngit
Promela va s& dugc kiém tra bing
SPIN model-checker. Trong qué trinh
dich chuyén nay, tbi tap trung giai
quyét cac van dé lién quan dén quan
hé ddng bo hoa trong mot tién trinh
BPEL.

Cac phan con lai cua bai béo
dugc t6 chirc nhu sau: phan 2 dé xuat
phuong phéap dich chuyén tir BPEL
sang dd thi. Phan 3 trinh bay phuong
phap dich chuyén tir @6 thi sang ngdn
ngtt Promela. Viéc cai dat dugc trinh
bay trong phan 4. T6i dua ra mot case-
study dé& minh hoa cho toan bo
phuong phéap nay trong phan 5. Cudi
cung, phan 6, la két luan va hudng
phat trién.

2. DICH CHUYEN TU BPEL
SANG PO THI LUONG PIEU
KHIEN CO GAN NHAN

Tién trinh BPEL dac ta quy trinh
ngiép vu twong tu nhu flow-chart. Moi
thanh phan trong quy trinh nay dugc
goi la mot hoat dong. Mdi hoat dong
c6 thé 1a hoat dong co ban hoic mot

hoat dong c6 cau trdc, chira cac hoat
doéng khac. Do d6, mot cach hinh thac
chung ta dinh nghia do thi c6 hudng
gan nhdn (Labeled Flow Control
Graph, LCFG)nhu sau: LFCG (V,E)
la mot dd thi c6 hudng, trong d6 V 1a
cac dinh (nat) va E la tap cac cung co
huéng thé hién su dich chuyén diéu
khién gitra cac nt.

Cac nat trong tap nat V c6 thé duoc
phan loai thanh nhiéu loai nut, dwgc
thé hién trong Bang 1.

Loai dinh Thé hién

NGt bat dau (két | Bat dau (két thac)
thuc) cua mét quy trinh

NGt bat NGt két
dau thic

dong c6 cau tric

Nut Fork (Join) Bat dau (két thuc)
— cua mot hoat dong

<flow>

biéu kién cua mot
hanh dong
nhanh hoac lap

Nut diéu kién

Nut hanh dong

ban

Cung dich chuyén | Thé hién sy dich
chuyén diéu khién
gitra cac dinh.

Bang 1 Cac loai nat trong LCFG

Student: Bui Hoang birc, K50, Software Engineering A

Page 75

hoac mot hoat

Mot hanh dong co

BPEL c6 7 hoat dong c6 ciu trdc,
trong bai bao nay, tdi chi xét 5 loai
hoat d6ng cd cau trdc sau:

Sequence activity: Thuc hién
mét chudi cac hanh dong tuan tu.

Activity 1

1

Activity 2

l

Activity 3

If activity: Hoat dong ré
nhanh. Nhanh duogc thuc hién khi thoéa
man diéu kién.

If Start

&
<

Activity 1 Activity 2 Activity 3

If End —

While activity, Repeat Until
activity : Hoat dong lip khi diéu kién
dang.

While start

While
Condition

Repeat Until
start

Activity

Activity

While end Repeat Until

end

Flow activity: M6 ta cac hoat
dong song song. Méi nhanh cua hoat
dong nay duoc thuc hién doc lap
nhau. Mdi nhanh cé thé 1a mot hoat
déng co ban hoic c6 cau tric.

Tuy nhién, c6 thé xuat hién cac
phu thudc déng bd hoa duoc mo ta
trong element <link>. Céac hoat dong
véi element <source> hoac <target> la
diém bat dau hoac két thic mot link.
Hoat dong duoc gan nhén <target> chi
duogc thuc hién khi ma joinCondition
duoc danh gia 1a true. Néu thudc tinh
joinCondition khong c6 thi diéu kién
hop 12 OR logic cua trang thai cua tat
ca cac link di vao hoat dong do. Trang
thai cia mot link cd thé 1a ‘true’,
‘false’ hodc ‘unset’. Do do6, mot hoat
doéng duoc thuc hién néu c6 mot link
c6 trang thai 1a true. Néu thudc tinh
suppressJoinFailure c6 gid tri ‘true’
thi mot 16i bpel:joinFailure s& xay ra
va duoc bat boi mot bo xu ly 16i,
nguoc lai, néu supprestJoinFailure 1a
‘false’ thi s¢ khong fault xay ra va cac
trang thai cua cac link di ra sé c0 gia
tri 1 false. Mdi hoat dong c6 thé duoc

Student: Bui Hoang birc, K50, Software Engineering A

Page 76

gan mot hodc nhiéu nhdn <source>
hoac <target>. Ngoai ra, nhén
<source> cO thé chira thanh phan
transitionCondition nham thé hién
diéu kién dé cho cac link di ra duogc cé
gia tri true.

Néu trong mot tién trinh ma
joinCondition bi béo di va
suppressJoinFailure cé gia tri ‘flase’
thi c6 thé coi cac hoat dong trong mdi
nhanh caa Flow activity s€ tr¢ thanh
tuan ty néu ching la source va target
caia mot link. Hoat dong cé nhén
source xuat hién trudc va hoat dong
c6 nhan target xuat hién sau. Mdi hoat
dong cd bao nhiéu nhan <source> thi
s& cO ting d6 cung xuat phat tir no.
Tén cua cac cung nay chinh la tén
link. Néu trong nhdn <source> c6
thanh phan transitionCondition thi b6
sung thém nat diéu kién giira link nay.

Mot Flow activity duoc biéu
dién boi nut fork va join. Trong do,
nhan cua nut fork Iuu thong tin vé cac
link xuét hién trong Flow activity do.

Flow Start

Activity i Activity j Activity k

Flow End

3. DICH CHUYEN TU PO THI
SANG NGON NGU PROMELA

Pé phuc vu cho qué trinh kiém
tra, cAu trac d6 thi LCFG can dugc
dich chuyén sang chuong trinh
Promela. Mdi chuong trinh Promela
chtra 3 thanh phan chinh: tién trinh,
kénh thong diép va bién. Cau tric
chinh cua d6 thi s& duoc dich chuyén
sang tién trinh chinh, con nhan cua
cac nat 1a nhirng théng tin can thiét hd
tro cho viéc dinh nghia kénh thong
diép va cac bién.

C4c bién trong chuong trinh
Promela duoc tir cac bién trong tién
trinh BPEL. O day, dé sinh ra c4c bién
trong Promela, t6i chi xét dén vin ban
BPEL thay vi xét dén cac van ban
WSDL va XSD tham chiéu dén tir vin
ban BPEL trén vi nhu vay s& khién
cho viéc bién dich tré nén hiéu qua
hon. Pau tién, rat nhiéu thanh phan
trong bién c6 thé khong duoc dung
dén trong tién trinh BPEL, nén van
dam bao ngir nghia cua tién trinh
BPEL khi chuyén sang Promela.
Ngoai ra, cac van ban WSDL cé chua
nhiéu dinh nghia kiéu khac cling nhu
tham chiéu dén cac van ban WSDL va
XSD khac, khién cho viéc xir ly khé
phiic tap. Néu chi xét trong 1 file
BPEL thi ta ciing c6 du thong tin dé
md hinh hoad thanh chuong trinh
Promela. Cach tiép can nay di duoc
su dung trong [5].

Kiéu dix liéu caa bién duoc xac
dinh dwa vao y nghia cua bién trong
tién trinh. Vi du nhu trong tién trinh
loanApproval [8], c6 bién request,
kiéu creditInformationMessage. Trudc

Student: Bui Hoang birc, K50, Software Engineering A

Page 77

hét, ta dinh nghia kiéu typedef
creditinformationMessage. Khi duyét,
gap biéu thirc truy cap vao trong thanh
phan cua bién ‘$request.amount <
10000°, v&i vé phai 1a sb, ta s& bd
sung thém vao kiéu dir liéu véi thanh
phan amount, kiéu short (vi 10000 c6
thé biéu dién bai kiéu short). Ta c6
doan code Promela:

typedef creditInformationMessage{

short amount;

bi
Mbi portType tng véi 2 kénh

thong diép 14 in channel va out
channel. In channel phuc vu cho viéc
nhan thong diép va Out channel phuc
vu cho viéc giri théng diép cua tién
trinh chinh. Kiéu caa channel 1a kiéu
dir ligu duoc st dung trong portType.

Mbi d6 thi tuwong Gng voi mot
proc chinh cta chuong trinh. Nguyén
tac dich chuyén tir d6 thi LCG sang
cau lénh Promela dugc xay dung dua
trén sy tuong ddng vé ngir nghia. Bén
canh tién trinh chinh, ta con phai tao
ra cac proctype khac dai dién cho cac
web service bao ham trong tién trinh
va web service goi tién trinh.

Bang 2 cho ta cac anh xa chinh
tir cac ciu trac dd thi sang ngén ngir
Promela.

Nut

Cau lénh

Invoke : name - — —
|

ArpusVaniabkas

BOLNCE
“argen

-outpulVarniatles

portType OUT !
output var
portType IN ?
input var

Nhan va gui
théng tin gitra
cac bién va kénh
truyeén.

receive : name |

- pannar

-saure
Sargat

« porType
~Cparation
Nanables

portType IN ?
variable

Nhan dr liéu tu
kénh vao bién

|

portType OUT !
variable

Gui dx liéu tu
bién ra kénh

Vanshla
- Par
-Exp

to=from
Khi gén, c6 chuy
toi cac thanh
phan dir liéu cua
bién hoic phan
tich biéu thirc

Activity 1

1

Activity 2

Activity 3

Cau lénh tuan tu

Student: Bui Hoang birc, K50, Software Engineering A

Page 78

If
: Condl ->

: else ->

Repeat Until
start

Do
:: Cond ->

While start

od

Activity

Activity

While end

Repeat Until
end

| e | 1) Moi

nhanh tuong
ung V6 mot
proc.

Activity i Activity | Activity k (2) I)inh
y o — nghia turng proc
theo cac
nguyén tac
Flowens trong bang nay.

(3) Trong

proc chinh, goi
dén cac proc da
dinh nghia &

phia trén. Su
dung cau Iénh
run.

Budc 2.2 : Xac dinh loai nut va su
dung nguyén tic dich chuyén trong bang
1

Buéc 2.3 : Néu la nit dai dién cho
structured activity, quay lai
buéc 2.1. Néu khéng, nhay
sang budc 2.4,

Budc 2.4: Xét nhan cua ndt, bd sung
bién, channel va kiéu dit liéu vao phan
khai b&o.

Buéc 3: Tong hop phan khai bao

Buéce 3.1 : Xac dinh cac kiéu dix lidu
typedef va mtype

Budc 3.2 : Khai bao bién

Budc 3.3 : Khai bao channel

/I Qué trinh duyét 1a tuan tu

Bang 2 Biéu dién trén ngdn ngix Promela
Giai thuat sau day mod ta qua
trinh duyét d6 thi va dich chuyén sang
ngon ngtr Promela.

Budc 1: Khoi tao phan khai bao va tién
trinh chinh.

Budc 2: Duyét d6 thi LCG

Budc 2.1 : Nhan 1 nat trong db thi

Vai cac link trong hoat dong flow,
néu khéng c6 joinCondition va
supressJoinFailure 1a ‘true’ thi co 2
lua chon cho nguoi dung:

(3.1) Giir nguyén ciu trc song song
bang cach chuyén cac activity trong
flow thanh céc proctype.

(3.2) Chuyén sang cau tr(c tuan tu
bang cach thém cac nut diéu kién.

4. CAI PAT

Trong phan nay, ching tdi trinh bay
vé kién tric tong quéat cua codng cu
duoc xay dung nham phuc vu qué
trinh dich chuyén va kiém tra tién

Student: Bui Hoang birc, K50, Software Engineering A

Page 79

trinh BPEL. Kién trdc chinh caa cong
cu dugc mo ta trong Hinh 1.

Hinh 1 Céac thanh phan ciaa cong cu

Thanh phén chinh cta cong cu nay 1a
phan Transformer. Pay 1a thanh phan
chiu trach nhiém dich chuyén gifra cac
dinh dang. Pau vao cua thanh phf?ln
nay 12 mot tién trinh BPEL va két qua
ma phan Transformer tra ra 1a mot
chuong trinh Promela twong tung voi
tién trinh d6. Vé6i vai tro d6, thanh
phan nay chtra cac goi twong tng véi
nhiém vu dich chuyén gitta cdc mo
hinh.

. . .

JGraphT

model.bpel JAXB

)
A\

\}

4
14 1
model.graph f ~——-—__ L __ _ _ ¥
transformer

model. promela

Trong cai dat cua chuong trinh, to1 str
dung cdc mo hinh 16p (object model)
dé thao tac voi cac van ban BPEL,
biéu dién LCFG va sinh ra chuong
trinh Promela.

M6 hinh BPEL gbém cic goi
model.bpel.abs va model.bpel.exe

chua hang tram 16p dugc sinh ra tu
XML Schema ctia BPEL 2.0 cho cac
tién trinh triru teong va kha chay bang
cach sur dung thu vién JAXB [9].

Mo hinh LCFG duogc cai dat bdi goi
model.graph. Trong d6, 16p quan
trong nhat 1a 16p LCFG, ké thira 16p
dd thi c6 huéng trong thu vién
JGraphT [11], thé hién mot d6 thi
ludng diéu khién c6 gan nhan.

Mo hinh Promela dugc xay dung tu
van pham cua ngdén ngitr Promela [10].
Trong do, cd6 3 gbéi class chinh:
model.promela chira cac 16p thé hién
cac ky tu chua két thiic ciia ngdn ngi;
model.promela.lilteral chira céc 16pthé
hién cac ky tu két thuc;
model.promela.op chita cic 16p thé
hién cac toan t.

Ngoai ra, cac thuat toan dich duogc cai
dat va thao tac trén cac mo hinh trén.

5. VI DU MINH HOA

Pé minh hoa cho qua trinh
chuyén dich qua cac dinh dang va
kiém tra cac thudc tinh cua tién trinh
BPEL, tdi sir dung tién trinh “Loan
Approval” [8]. Quan sat ban dau co
thé tkhién nguoi ding nghi tién trinh
nay chi bao gom céc hoat dong duoc
thuc hién song song. Tuy nhién, khi
phan tich k§ hon, ching ta thdy rang
cac hoat dong nay c6 rang buoc vai
nhau vé quan hé dong bo hoa. Phan
sau day, toi s€ mo ta cac budc cua qua
trinh chuyén dich sang céc dang biéu

Student: Bui Hoang birc, K50, Software Engineering A

Page 80

dién khac nhau va kiém tra mét thuoc
tinh can thiét cua tién trinh nay.

Buéc thi nhat can thuc hién 13
biéu dién tién trinh BPEL trén dudi
dang dd thi LCFG. Cac quy tic dich
chuyén duwoc mé ta trong phan hai.
Toan bo tién trinh nay s& duoc biéu
dién boi mot d6 thi LCFG nhu Hinh 2.

Sau khi xay dyng d6 thi LCFG
cua tién trinh BPEL, budc tiép theo 1a
dich chuyén sang ngbn ngir Promela.
O day, cac hoat dong flow duoc anh
xa theo cach (3.1) . Mot két qua anh
Xa twong tu cO thé tham khao trong
[5]. Chuong trinh c6 thé tao ra chuong
trinh Promela véi cach anh xa (3.2)
nhung to61 khong trinh bay ¢ day.

Két qua 1a tao ra duoc mot
chuong trinh Promela véi céc bién
vakiéu di liéu

mtype = {low};

mtype = {yes};

mtype = {other};

mtype = {Ltrue, Lfalse, unset};

typedef creditInformationMessage{
short amount; };

typedef approvalMessage({
short accept;};

typedef riskAssessmentMessage {
short level; };

chan customerPL = [0] of
{creditInformationMessage};
chan approverPL = [0] of
{approvalMessage};

chan assessorPL = [0] of

{riskAssessmentMessage};
creditInformationMessage request;
approvalMessage approval;
riskAssessmentMessage risk;

short rec to assess=unset;

short rec to app=unset;

short app to rep=unset;

short assess to setmsg=unset;
short setmsg to rep=unset;
short assess to app=unset;

Chuong trinh sinh ra gém c6 8
proctype. Trong do6, 5 proctype la

Receivel(), Invokel(),
Assignl(), Invoke2() va Reply1() xuat
phat tir 5 activity trong flow activity.
Proctype loanApproval() sé chay 5
tién trinh nay
proctype loanApproval () {

run Receivel ();

run Invokel ();

run Assignl () ;

run Invoke2();

run Replyl () ;

}
Bén canh d6 c6 3 proctype

customer(), approver() va assessor()
xuat phat tir cac portType — cac web
service twong tac vai tién trinh.

Cubi cung, tién trinh init() s& khoi
dong chuong trinh Promela.

init{
run loanApproval () ;
run customer () ;
run approver();
run assessor () ;

Student: Bui Hoang birc, K50, Software Engineering A

Page 81

ass dessage.
seiMessage-o-reply,
assess10-approval

Stop

Hinh 2 Minh hoa d thi LCFG twong iing
véi tien trinh loanApproval

Nguoi st dung 6 thé dit cac cau
hoi dudi dang biéu thuc LTL dé kiém
tra tién trinh c6 thoa man cac cau hoi
d6 hay khéng. Vi du, trong tién trinh
“Loan approval”, mot cau hoi dugc
dit ra 1a “Véi hai yéu cau nhu nhau,
c6 thé xay ra truong hop lic thi duoc
chap nhan, IGc thi bi kiém tra thém
hay khong?”,

Pé tra loi cau hoi nay, chung ta
khai bdo mot bién result kiéu int. Khi
tién trinh bat dau duoc thuc hién gan
result bang 0. Néu duoc yéu cau dugc
chap nhan (tic 1a sau hoat dong gan)
thi gia tri cua result bang 1. Néu yéu
cau bi kiém tra thém (tc 1a sau hoat
dong invoke cua approver) thi gia tri
cua result bang 2. Ngoai cac cau lénh
khai béo va thay d6i gia tri cua bién
result, toan bo cau hoi nay sé dugc md
ta nhu sau:

#define accepted (result==1)
#define rejected (result==2)
! (<> (accepted && rejected))

Két qua kiém tra dwgc thé hién trong
Bang 3

(Spin Version 5.2.4 -- 2 December
2009)

+ Partial Order Reduction
Full statespace search for:

never claim - (none
specified)

assertion violations +

cycle checks -
(disabled by -DSAFETY)

invalid end states +

State-vector 96 byte, depth reached
65561, e+ errors: 0 ee-

1667332 states, stored
65537 states, matched

1732869 transitions (=
stored+matched)

0 atomic steps
hash conflicts: 959894 (resolved)
218.113 memory usage (Mbyte)
unreached in proctype loanApproval
(0 of 18 states)
unreached in proctype customer
(0 of 10 states)
unreached in proctype assessor
(0 of 10 states)
unreached in proctype approver
(0 of 10 states)
unreached in proctype :init:
(0 of 5 states)
pan: elapsed time 2.69 seconds

pan: rate 620518.05 states/second

Bang 3 Két qua kiém dinh thugc tinh

Student: Bui Hoang birc, K50, Software Engineering A

Page 82

6. KET LUAN VA HUONG PHAT
TRIEN

Trong bai bao nay, t6i di dé xuit
moét phuong phap kiém tra tién trinh
BPEL mot cach truc quan. Viéc dich
chuyén tién trinh BPEL sang dang do
thi LCG giup nguoi st dung dé dang
nim bat duoc tién trinh va loai bo di
nhitng thdng tin khdng can thiét cho
qua trinh kiém tra. Ngoai ra, ching toi
da dé xuat giai phap ddi véi cac hoat
dong dong bo hoa.

Trong twong lai, toi s& tiép tuc
hoan thién viéc chuyén doi cac
activity lién quan dén viéc bat 15i
trong tién trinh BPEL va hd trg nguoi
sir dung trong viéc xay dung cac biéu
thac LTL mot cach dé dang hon.

7. LOI TRI AN

Em xin giri 161 cam on sdu sic dén pho gido su,
tién si Huynh Quyét Thing, giang vién Vién
Cong Nghé Thong Tin va Truyén Théng, Pai hoc
Bach Khoa Ha Ngi va thac si Pham Thi Quynh,
giang vién dai hoc Su Pham Ha Noi da tan tinh
giup d& em thyc hién cong trinh nay.

TAI LIEU THAM KHAO

[1] Franck van Breugel, Maria Koshkina.
“Models and Verification of BPEL”. Unpublished
Draft, September, 2006.

[2] Xiang Fu,Bultan,Jianwen Su. “Analysis of
Interacting BPEL Web Services”. Proceedings of the
13th international conference on World Wide Web.
Pages: 621 — 630. 2004

[3] Shin Nakajima. “Lightweight formal
analysis of web service work flows”. Progress in
Informatics, 2005.

[4] ChristianStahl. “A Petri net semantics for
BPEL”.2004

[5] José Garcia-Fanjul,Javier Tuya,Claudio de
la Riva. “Generating Test Cases Specifications for
BPEL Compositions of Web Services Using SPIN”.
International Workshop on Web Services. 2006

[6] Al-Gahtani ~ Ali, Al-Muhaisen Badr,
Dekdouk Abdelkader. “A Methodology and a Tool
for Model-based Verification and Simulation of
Web Services Compositions”. International
Conference on Information and Communications
Security.2004.

[7] Spin - Formal Verification.

http://spinroot.com

[8] OASIS Web Services Business Process
Execution Language (WSBPEL) TC.
http://www.0asis-open.org/committees/wsbpel/

[9] JAXB Reference
https://jaxb.dev.java.net/

Implementation.

[10] Promela GRAMMAR.
http://spinroot.com/spin/Man/grammar.html

[11] JGraphT, a graph library.
http://www.jgrapht.org

Student: Bui Hoang birc, K50, Software Engineering A

Page 83

http://spinroot.com/
http://www.oasis-open.org/committees/wsbpel/
http://spinroot.com/spin/Man/grammar.html
http://www.jgrapht.org/

Appendix B. Some Tools And Libraries Used In The Thesis

B.1. JAXB

JAXB stands for Java Architecture for XML Binding which is a library in Java that
help application to access XML documents. JAXB has two main features:
marshalling Java objects into XML and marshalling XML back into Java objects. In
other words, JAXB allows storing and retrieving data in memory in any XML
format, without the need to implement a specific set of XML loading and saving
routines for the program'’s class structure.

Schema-
Binding Derived
Compiler Classes &
Interfaces

Application

Figure B-1 JAXB Architecture

B.2. JGraphT

JGraphT [39] is “a free Java graph library that provides mathematical graph-theory
objects and algorithms. JGraphT supports various types of graphs including:

directed and undirected graphs.

graphs with weighted / unweighted / labeled or any user-defined edges.
various edge multiplicity options, including: simple-graphs, multigraphs,
pseudographs.

unmodifiable graphs - allow modules to provide "read-only" access to
internal graphs.

listenable graphs - allow external listeners to track modification events.
subgraphs graphs that are auto-updating subgraph views on other graphs.

all compositions of above graphs.”

JGraphT library focuses on data structures to represent graphs in memory and
algorithms of graph traversal and manipulation.

Student: Bui Hoang Duc, K50, Software Engineering A Page 84

B.3. JGraph

JGraph 5 [40] is a Swing-compliant, open source (BSD) graph component for Java.
This library focuses on rendering; automated lay outing and editing graphs on
Swing GUL.

B.4. Jspin

JSpin [41] is a graphical user interface for the Spin model checker. The program is
an open source (GNU) Java library. The user interface of jSpin is quite simple with
menus, a toolbar and three adjustable text areas but provide controls for most of
functionalities of the Spin. New Spin users can use it to interact with Spin easily
instead of using the command line interface of the Spin.

Appendix C. Javadoc of Main Packages in BVT

Transformer

transformer.bl Contains classes that transform BPEL documents into LCFGs.
transformer.lp Contains classes that transform LCFGs into PROMELA programs.
BPEL Model

model.bpel.abs

Contains classes that represent elements in abstract BPEL
processes.

model.bpel.exe

Contains classes that represent elements in executable BPEL
processes.

Graph Model

model.graph

Contains model classes of LCFG

PROMELA Model

model.promela

Contains model classes of PROMELA language

model.promela.literal

Contains model classes of literal characters in PROMELA
language

model.promela.literal.op

Contains model classes of operations in PROMELA language

Test cases

testcase

Contains test classes.

testcase.transformation

Contains test classes for transformations.

GUI

ispin.filterSpin

Classes adapted from jSpin filterSpin.

ispin.jspin

Classes adapted from jSpin.

ispin.spinSpider

Classes adapted from jspin spinSpider.

ul

Contains GUI classes.

Student: Bui Hoang birc, K50, Software Engineering A

Page 85

file:///F:/workspace1/JVT-doc/transformer/bl/package-summary.html
file:///F:/workspace1/JVT-doc/transformer/lp/package-summary.html
file:///F:/workspace1/JVT-doc/model/bpel/abs/package-summary.html
file:///F:/workspace1/JVT-doc/model/bpel/exe/package-summary.html
file:///F:/workspace1/JVT-doc/model/graph/package-summary.html
file:///F:/workspace1/JVT-doc/model/promela/package-summary.html
file:///F:/workspace1/JVT-doc/model/promela/literal/package-summary.html
file:///F:/workspace1/JVT-doc/model/promela/literal/op/package-summary.html
file:///F:/workspace1/JVT-doc/testcase/package-summary.html
file:///F:/workspace1/JVT-doc/testcase/transformation/package-summary.html
file:///F:/workspace1/JVT-doc/jspin/filterSpin/package-summary.html
file:///F:/workspace1/JVT-doc/jspin/jspin/package-summary.html
file:///F:/workspace1/JVT-doc/jspin/spinSpider/package-summary.html
file:///F:/workspace1/JVT-doc/ui/package-summary.html

Other Packages

exceptions Classes representing exceptions in BVT.
jsyntaxpane Classes adapted from jsyntaxpane library.

jsyntaxpane.actions

jsyntaxpane.components

jsyntaxpane.lexers

jsyntaxpane.syntaxkits

jsyntaxpane.util

parser.xpath2 Lexical analyzer and parser for XPath 2.0 expressions.

util Contains utility classes that are used by JVT.

Student: Bui Hoang birc, K50, Software Engineering A Page 86

file:///F:/workspace1/JVT-doc/exceptions/package-summary.html
file:///F:/workspace1/JVT-doc/jsyntaxpane/package-summary.html
file:///F:/workspace1/JVT-doc/jsyntaxpane/actions/package-summary.html
file:///F:/workspace1/JVT-doc/jsyntaxpane/components/package-summary.html
file:///F:/workspace1/JVT-doc/jsyntaxpane/lexers/package-summary.html
file:///F:/workspace1/JVT-doc/jsyntaxpane/syntaxkits/package-summary.html
file:///F:/workspace1/JVT-doc/jsyntaxpane/util/package-summary.html
file:///F:/workspace1/JVT-doc/parser/xpath2/package-summary.html
file:///F:/workspace1/JVT-doc/util/package-summary.html

Bibliography

[1] Vu Thi Huong Giang, “Service-Oriented Software Engineering, Lecture
Notes,” 2009.

[2] Hugo Haas, “Designing the architecture for Web services,” May. 2003.

[3] Philippe Le Hégaret, “Introduction to Web Services,” Mar. 2003.

[4] W3C Recommendation, “SOAP Version 1.2” Available:
http://www.w3.0rg/TR/soapl12-partl/.

[5] Wikipedia, the free encyclopedia, “Comparison of BPEL engines” Available:
http://en.wikipedia.org/wiki/Comparison_of_BPEL_engines.

[6] OASIS Standard, “Web Services Business Process Execution Language
Version 2.0,” Web Services Business Process Execution Language Version 2.0
Available: http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.html.

[7] Roger S. Pressman, Software Engineering: A Practitioner's Approach,
McGraw-Hill Higher Education, 2001.

[8] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled, Model Checking,
1999.

[9] Mordechai (Moti) Ben-Ari, Principles of the Spin Model Checker, Springer,
2008.

[10] John E. Hopcroft and Jeffrey D. Ullman, Introduction to automata theory,
languages, and computation, Addison-Wesley, 1979.

[11] Abdulla Eid, Finite omega-Automata and Buchi Automata, University of
[llinois, Department of Computer Science, 2009.

[12] G.J. Holzmann, The SPIN Model Checker: Primer and Reference Manual,
Addison-Wesley, 2004.

[13] Spinroot, “Promela grammar” Available:
http://spinroot.com/spin/Man/grammar.html.

[14] Franck van Breugel and Maria Koshkina, “Models and Verification of BPEL,”
2006.

[15] Carnegie Mellon University, “The SMV System” Available: http://www-
2.cs.cmu.edu/~modelcheck/smv.html.

[16] “NuSMV: a new symbolic model checker” Available: http:/nusmv.irst.itc.it/.

[17] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer, “Model-based
Verification of Web service Compositions,” Proceedings of the 18th IEEE
International Conference on Automated Software Engineering
Conference(ASE), 2003.

[18] GwenSalaun, LucasBordeaux, and MarcoSchaerf, “Describing and Reasoning
on Web Services using Process Algebra,” Proceeding to IEEE International
Conference on Web Services 2004, 2004.

[19] Xiang FU, Tevfik Bultan, and Janwen Su, “Analysis of Interacting BPEL Web
Services,” UCSB Computer Science Department Technical Report 2004-2005,
2005.

[20] Xiang FU, Tevfik Bultan, and Janwen Su, “Model Checking Interactions of
Composite Web Services,” Proceedings of the 13th International World Wide
Web Conference, 2004.

[21] Sebastian Hinz, Karsten Schmidt, and Christian Stahl, “Transforming BPEL to

Student: Bui Hoang birc, K50, Software Engineering A Page 87

Petri nets,” Proceedings of the 3rd International Conference on Business
Process Management, 2005.

[22] YanPing Yang, QingPing Tan, and Yong Xiao, “Verifying Web Services
Composition Based on Hierarchical Colored Petri Nets,” ACM workshop on
Interoperability of Heterogeneous Information Systems (IHIS'05), Bremen,
Germany: 2005.

[23] Shin NAKAIJIMA, “Model-Checking Behavioral Specification of BPEL
Applications,” Electronic Notes in Theoretical Computer Science 151 (2006)
89-105, 2006.

[24] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer, “LTSA-WS: a
tool for model-based verification of web service compositions in Eclipse,”
Proceeding of the 28th International Conference on Software Engineering,
Shanghai: 2006, p. 4.

[25] Xiangping Chen, Gang Huang, and Hong Mei, “Towards automatic
verification of web-based SOA applications,” Asia-Pacific Web Conference
2008, Shenyang, China: 2008.

[26] AL-GAHTANI Ali, AL-MUHAISEN Badr, and DEKDOUK Abdelkader, “A
Methodology and a Tool for Model-based Verification and Simulation of Web
Services Compositions.”

[27] Oracle Corporation, “Java API for XML Processing,” jaxp: JAXP Reference
Implementation Available: https://jaxp.dev.java.net/.

[28] Apache Software Foundation, “Xerces2 XML Parser for Java,” Xerces2 Java
Parser Readme Available: http://xerces.apache.org/xerces2-j/.

[29] JDOM Project, “Java Document Object Model,” JDOM Available:
http://www.jdom.org/.

[30] OASIS, “XML Schema for Abstract Process Common Base for WS-BPEL
2.0,” Schema for Abstract Process Common Base for WS-BPEL 2.0 Available:
http://docs.oasis-open.org/wshpel/2.0/OS/process/abstract/ws-
bpel_abstract_common_base.xsd.

[31] OASIS, “XML Schema for Executable Process for WS-BPEL 2.0,” Schema for
Executable Process for WS-BPEL 2.0 Available: http://docs.oasis-
open.org/wsbpel/2.0/0S/process/executable/ws-bpel_executable.xsd.

[32] Marcus Alanen and Ivan Porres, A Relation Between Context-Free Grammars
and Meta Object Facility Metamodels, Finlan: Abo Akademi University. Turku
Centre for Computer Science, 2003.

[33] W3C, “JJTree file for XPath 2.0,” XPath 2.0 Grammar Test Page Available:
http://www.w3.0rg/2007/01/applets/xpath-grammar.jjt.

[34] AT&T Research, “Graphviz - Graph Visualization Software” Available:
http://www.graphviz.org/.

[35] Michael Himsolt, “GML: A portable Graph File Format” Available:
http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html.

[36] GraphML Team, “The GraphML File Format” Available:
http://graphml.graphdrawing.org/.

[37] ayman.alsairafi, “jsyntaxpane - Project Hosting on Google Code” Available:
http://code.google.com/p/jsyntaxpane/.

[38] Frédéric Servais, “Verifying and Testing BPEL Processes,” Université Libre de
Bruxelles, 2006.

Student: Bui Hoang birc, K50, Software Engineering A Page 88

[39] JGraphT Project, “JGraphT - a free Java Graph Library,” Welcome to JGraphT
- a free Java Graph Library Available: http://jgrapht.sourceforge.net/.

[40] JGraph Ltd, “JGraph - The Java Open Source Graph Drawing Component -
version 5,” JGraph - The Java Open Source Graph Drawing Component
Available: http://www.jgraph.com/jgraph5.html.

[41] Mordechai (Moti) Ben-Ari, “jspin - A graphical user interface for the Spin
model Checker,” The jSpin development environment for Spin Available:
http://code.google.com/p/jspin/.

Student: Bui Hoang birc, K50, Software Engineering A Page 89

